Technical Trading Rules Empirical Evidence from Future Data

29,99 €*

Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.

ISBN/EAN: 9783638432443
Master's Thesis from the year 2005 in the subject Business economics - Banking, Stock Exchanges, Insurance, Accounting, grade: A, Sophia Antipolis Campus (France); SKEMA Business School (Global Finance Chair), language: English, abstract: Most banks and the recently upcoming hedge fund industry rely to a different extent on technical trading rules and technical analysis. The fact that these technical trading rules yield superior returns in practice raises several questions that will be examined in the thesis. First, one of the most crucial questions is in which assets technical trading rules perform extraordinarily well. This analysis is based on a risk-return approach with an assessment of the negative standard deviation of each asset as a risk indicator. Second, the statistical significance of technical trading is examined by using a simulation method known as bootstrap. Third, null models are simulated to answer the question to what extent autoregressive models and GARCH models are able to capture the dependencies in the time series. Finally, a rule optimizer is used to assess if any rule parameters yield superior returns over a wide range of assets. We find that under a risk-return perspective trading rules look very attractive as most rules are able to significantly reduce the negative standard deviation compared to a buy-and-hold strategy. However, not all rules are able to outperform a simple buy-and-hold strategy in terms of absolute return. Statistical significance is generally weak and only some rules can be qualified as highly statistically significant. We do not find much evidence that autoregressive and GARCH null models perform well in capturing the dependencies that lead to superior returns of technical trading rules. With respect to trading rule parameters we find that shorter rules generally perform better when trading costs are not considered and that currencies benefited from a larger standard deviation trading band.
Autor: Philipp Jan Siegert
EAN: 9783638432443
eBook Format: PDF/ePUB
Sprache: Englisch
Produktart: eBook
Veröffentlichungsdatum: 27.10.2005
Kategorie:
Schlagworte: Data Empirical Evidence Future Rules Technical Trading

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.


shop display image

Möchten Sie lieber vor Ort einkaufen?

Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.

Bergische Buchhandlung R. Schmitz
Wetterauer Str. 6
42897 Remscheid-Lennep
Telefon: 02191/668255

Mo – Fr10:00 – 18:00 UhrSa09:00 – 13:00 Uhr