Numerische Optimierung des Shortfall-Risikos von Aktienportfolios am Beispiel des Value at risk
74,00 €*
Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.
ISBN/EAN:
9783832480431
Inhaltsangabe:Problemstellung: Die Portfoliotheorie hat sich über einen sehr langen Zeitraum entwickelt. So steht z. B. in dem auf ca. 500 n. Chr. datierten jüdischen Talmud (hebr. Lehre, Lernen) sinngemäß, dass das Vermögen zu jeweils einem Drittel in „Land, Geschäften und liquiden Mitteln“ gestreut angelegt werden soll. Nachdem in den 50er Jahren von Markowitz das weltweit bekannte „klassische Selektionsmodell“ entwickelt wurde, welches sich durch einen bestechend einfach verständlichen Ansatz auszeichnet, ist in der Folge eine Vielzahl moderner mathematischer Verfahren entwickelt worden, die sich der Optimierung des gebündelten Risikos von Portfolios widmet. In der vorliegenden Arbeit wird versucht ein restringiertes nichtlineares und nichtquadratisches Optimierungsmodell für das Risiko von Aktienportfolios zu entwickeln, welches anhand empirischer Daten aus der Karlsruher Kapitalmarktdatenbank der Universität Karlsruhe mit dem klassischen Modell von Markowitz verglichen wird. Dabei wird insbesondere auf die Problematiken der Zeitabhängigkeit der Volatilität und der Rendite – Verteilungsstrukturen eingegangen. Als Risikomaß wird hier der „Value at Risk“ (VaR) des Anlageportfolios in Abhängigkeit von Anlagedauer, erwarteter Portfoliorendite und vorgegebenem Konfidenzniveau optimiert, wobei zu beachten ist, dass die Konvexität der Zielfunktion nicht gesichert ist. Alternativ dazu wird ein weiteres Risikomaß untersucht, welches unter bestimmten Bedingungen günstigere Optimierungseigenschaften besitzt, der sogenannte „Conditional Value at Risk“ (CVaR). Die für die numerische Optimierung benötigten Renditeverteilungen werden dazu mit Hilfe der Kerndichteschätzung aus historischen Daten, sowie der Simulation als „Geometrisch Brownsche Bewegung (GBB)“ und CEV – Diffusionsprozess, welcher die GBB als Sonderfall enthält, modelliert. Da das computergestützte implementierte Optimierungsverfahren sehr rechen- und damit auch zeitintensiv ist, wird die Arbeit mit einem Ansatz abgerundet, mit dessen Hilfe es möglich ist die Aufgabenstellung näherungsweise als quadratisches Optimierungsproblem aufzufassen und damit den sehr gut erforschten Verfahren der quadratischen Optimierung zugänglich zu machen. Inhaltsverzeichnis:Inhaltsverzeichnis: 1.Einführung1 1.1Entwicklung der Portfoliotheorie1 1.2Das klassische Selektionsmodell von Markowitz1 1.2.1Effiziente Portfolios2 1.3Wichtige Erweiterungen des Ansatzes von Markowitz4 1.3.1Kapitalmarktlinie [...]
Autor: | Friedrich Maisenhälder |
---|---|
EAN: | 9783832480431 |
eBook Format: | |
Sprache: | Deutsch |
Produktart: | eBook |
Veröffentlichungsdatum: | 07.06.2004 |
Kategorie: | |
Schlagworte: | diffusionsprozesse kapitalmarkttheorie portfoliooptimierung risk value zeitreihenanalyse |
Anmelden
Möchten Sie lieber vor Ort einkaufen?
Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.
Bergische Buchhandlung R. Schmitz
Wetterauer Str. 6
42897 Remscheid-Lennep
Telefon: 02191/668255
Mo – Fr10:00 – 18:00 UhrSa09:00 – 13:00 Uhr