Herleitung der Integration für Funktionen von R² nach R bezogen auf das Riemannintegral

29,99 €*

Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.

ISBN/EAN: 9783640490394
Examensarbeit aus dem Jahr 2009 im Fachbereich Mathematik - Analysis, Note: 1 , Universität Koblenz-Landau, Sprache: Deutsch, Abstract: Historisch liegen die Wurzeln der Integralrechnung in der Ermittlung von Flächeninhalten, da man es sich zur Aufgabe machte, den Flächeninhalt auch solcher ebenen Gebilde zu ermitteln, die nicht durch Polygone begrenzt werden. Methodische Ansätze finden sich zwar bereits bei Archimedes, Cavalieri und Barrow, die systematische Entwicklung aber beginnt erst mit der Entdeckung des Zusammenhangs von Differentiation und Integration durch Leibniz und Newton um 1670. Durch sie wurde die Integralrechung im eigentlichen Sinne als 'calculus summatorius' und später als 'calculus integralis' begründet. Leibniz war es dann auch, der am 29. Oktober 1675 das Integralzeichen ?festlegte. Es stellt ein stilisiertes S dar, welches dem Wort Summe entnommen wurde. Der Zusammenhang zwischen Summation und Integration ist schon mit der Herleitung gegeben, wie später deutlich wird. Eine Präzisierung des Integralbegriffs für stetige Funktionen nahm erstmals Cauchy (1823) in Angriff. Riemann (1854) erweiterte diesen auf etwas allgemeinere Funktionen. Einen andersartigen, wesentlich flexibleren und sehr umfassenden Integralbegriff führte Lebesque (1902) ein. (vgl. Wolff, 1967, S.61 und Königsberger, 1999, S.191f) Die vorliegende Examensarbeit beschränkt sich im Wesentlichen auf das Integral stetiger Funktionen in ? bezogen auf das Riemannintegral, das in Kapitel I 1 hergeleitet und durch einige Eigenschaften, den Mittelwertsatz der Integralrechnung, den Hauptsatz der Differential- und Integralrechnung und die Definition der Stammfunktion beschrieben wird. In Kapitel I 2 wird die Herleitung auf die Integration stetiger Funktionen in 2? erweitert und somit ein direkter Vergleich zum Integral stetiger Funktionen in ? geschaffen. Anschließend wird in Kapitel I 3 gezeigt, wie man das Doppelintegral durch Zerlegung der doppelten Integration in zwei einfache Integrationen berechnen kann, was uns zum Satz von Fubini führt.
Autor: Marc Sprick
EAN: 9783640490394
eBook Format: PDF
Sprache: Deutsch
Produktart: eBook
Veröffentlichungsdatum: 09.12.2009
Kategorie:
Schlagworte: Funktionen Herleitung Integration Riemannintegral

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.


shop display image

Möchten Sie lieber vor Ort einkaufen?

Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.

Bergische Buchhandlung R. Schmitz
Wetterauer Str. 6
42897 Remscheid-Lennep
Telefon: 02191/668255

Mo – Fr10:00 – 18:00 UhrSa09:00 – 13:00 Uhr