Functional Equations in Probability Theory
54,95 €*
Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.
ISBN/EAN:
9781483272221
Functional Equations in Probability Theory deals with functional equations in probability theory and covers topics ranging from the integrated Cauchy functional equation (ICFE) to stable and semistable laws. The problem of identical distribution of two linear forms in independent and identically distributed random variables is also considered, with particular reference to the context of the common distribution of these random variables being normal. Comprised of nine chapters, this volume begins with an introduction to Cauchy functional equations as well as distribution functions and characteristic functions. The discussion then turns to the nonnegative solutions of ICFE on R+; ICFE with a signed measure; and application of ICFE to the characterization of probability distributions. Subsequent chapters focus on stable and semistable laws; ICFE with error terms on R+; independent/identically distributed linear forms and the normal laws; and distribution problems relating to the arc-sine, the normal, and the chi-square laws. The final chapter is devoted to ICFE on semigroups of Rd. This book should be of interest to mathematicians and statisticians.
Autor: | Ramachandran Balasubrahmanyan, Ka-Sing Lau |
---|---|
EAN: | 9781483272221 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 12.05.2014 |
Kategorie: | |
Schlagworte: | chi-square laws normal laws random variables semigroups semistable laws stable laws |
Anmelden
Möchten Sie lieber vor Ort einkaufen?
Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.
Bergische Buchhandlung R. Schmitz
Wetterauer Str. 6
42897 Remscheid-Lennep
Telefon: 02191/668255
Mo – Fr10:00 – 18:00 UhrSa09:00 – 13:00 Uhr