Condition Monitoring Using Computational Intelligence Methods

128,39 €*

Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.

ISBN/EAN: 9781447123804

Condition Monitoring Using Computational Intelligence Methods promotes the various approaches gathered under the umbrella of computational intelligence to show how condition monitoring can be used to avoid equipment failures and lengthen its useful life, minimize downtime and reduce maintenance costs. The text introduces various signal-processing and pre-processing techniques, wavelets and principal component analysis, for example, together with their uses in condition monitoring and details the development of effective feature extraction techniques classified into frequency-, time-frequency- and time-domain analysis. Data generated by these techniques can then be used for condition classification employing tools such as:

fuzzy systems; rough and neuro-rough sets; neural and Bayesian networks;hidden Markov and Gaussian mixture models; and support vector machines.

Tshilidzi Marwala is the Executive Dean of the Faculty of Engineering and the Built Environment at the University of Johannesburg. He was previously a full Professor of Electrical Engineering as well as the Carl and Emily Fuchs Chair of Systems and Control Engineering at the University of the Witwatersrand. He is a Fellow of the Royal Society of Arts as well as the Royal Statistical Society and a Senior Member of both the IEEE and the ACM. He holds a PhD in Engineering from the University of Cambridge and a PLD from Harvard University in the USA. He was a post-doctoral research associate at Imperial College (London) working in the general area of computational intelligence. He was a visiting fellow at Harvard University and Cambridge University. His research interests include the application of computational intelligence to mechanical. civil, aerospace and biomedical engineering.

Professor Marwala has made fundamental contributions to engineering including the development of the concept of pseudo-modal energies and the development of the Bayesian framework for solving engineering problems such as finite-element-model updating. He has supervised 40 masters and PhD students many of whom have proceeded to distinguish themselves at universities such as Harvard, Oxford and Cambridge. He has published over 200 papers in archival journals, proceedings and book chapters and holds 3 patents. He has published three books: Computational Intelligence for Modelling Complex Systems published by Research India Publications, Computational Intelligence for Missing Data Imputation, Estimation, and Management: Knowledge Optimization Techniques published by the IGI Global Publications (New York) and Finite Element Model Updating Using Computational Intelligence published by Springer (2010); he has a fourth, Conflict Modeling Using Computational Intelligence under contract with Springer's computer science list. He is the Associate Editor of 4 journals including the International Journal of Systems Science and his work has appeared in prestigious publications such as New Scientist.

Autor: Tshilidzi Marwala
EAN: 9781447123804
eBook Format: PDF
Sprache: Englisch
Produktart: eBook
Veröffentlichungsdatum: 25.01.2012
Untertitel: Applications in Mechanical and Electrical Systems
Kategorie:
Schlagworte: Computational Intelligence Condition Monitoring Damage Detection Fault Identification Gaussian Mixture Models Hidden Markov Models Incremental Learning Signal Processing Support Vector Machines Vibration Data

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.


shop display image

Möchten Sie lieber vor Ort einkaufen?

Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.

Bergische Buchhandlung R. Schmitz
Wetterauer Str. 6
42897 Remscheid-Lennep
Telefon: 02191/668255

Mo – Fr10:00 – 18:00 UhrSa09:00 – 13:00 Uhr