An Improved Lightweight Privacy Preserving Authentication Scheme for SIP-Based-VoIP Using Smart Card

39,99 €*

Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.

ISBN/EAN: 9783960676287
In the past few years, secure information sharing became very popular in the area of immigration, military applications, healthcare, education, foreign affairs, etc. As secure communication utilizes both wireless and wired communication mechanizations for exchanging sensitive information, security and privacy of the information exchange cannot be easily compromised. To moderate the security, integrity, authenticity, and privacy issues related to information exchange, numerous authentication mechanisms have been recommended by different researchers in the literature in recent times, but these are vulnerable to prospective security flaws such as masquerade, insider, replay, impersonation, password guessing, server spoofing, denial-of-service attacks and, in addition, have failed to deliver mutual authentication. In the past few years we have also witnessed a balanced growth in the acceptance of VoIP (Voice over IP) facilities because the numerous Web and VoIP applications depend on huge and extremely distributed infrastructures to process requests from millions of users in an appropriate manner. Due to their extraordinary desires, these large-scale internet applications have frequently surrendered security for other objectives such as performance, scalability and availability. As a result, these applications have characteristically favored weaker, but well-organized security mechanisms in their foundations. Session Initiation Protocol (SIP) is an application and presentation layers signaling protocol that initiates, modifies, and terminates IP-based multimedia sessions. Implementing SIP for secure communication has been a topic of study for the past decade, and several proposals are available in the research domain. However, security aspects are not addressed in most of these proposals, because SIP is exposed to several threats and faces security issues at these layers. Probes for SIP (Session Initiation Protocol) servers have been conveyed for many years. To gather more details about these activities the author has designed a scheme for SIP servers in a network and composed data about some popular attacks. Furthermore, he explains his interpretations and guidance on how to prevent these attacks from being successful. Biometrics, a new field of research, has also been dealt with in this research by means of a 'three-factor authentication scheme', in which one factor is biometrics.

SAEED ULLAH JAN received PhD degree in Network Security from University of Malakand in 2021. He is working as a Lecturer in Computer Science at Higher Education, Achieves & Libraries Department Govt of Khyber Pakhtunkhwa - Pakistan. He is also working as Coordinator for 09 BS Disciplines in Govt College Wari (Dir Upper) - a far-flung remote area of the province where most of the youngsters have no access to Universities/Institutions for Higher Education. Furthermore, he has conducted research in many areas including Green Computing, Distributed Computing, Privacy-Preserving Parallel Computation, and Drone Security & Authentication. He has published over 10 research articles in prestigious conferences and journals and written an introductory Book in Computer Science for beginners. The Government of Khyber Pakhtunkhwa, Pakistan awarded 'Best Teacher Award' for the year 2019-20 out of 11000 College Teachers in 309 public sector colleges in the Province.

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.


shop display image

Möchten Sie lieber vor Ort einkaufen?

Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.

Bergische Buchhandlung R. Schmitz
Wetterauer Str. 6
42897 Remscheid-Lennep
Telefon: 02191/668255

Mo – Fr10:00 – 18:00 UhrSa09:00 – 13:00 Uhr