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The convergence of nano and biotechnology, also known as  nanobiotechnology, 
is a promising up-the-front science topic for improving materials and  processes. 
Within this new field, the development of (bio)sensors from  nanomaterials 
is an exciting area which is already providing real-life applications in the 
 biotechnological, clinical, and environmental fields. In this context, electrochemi-
cal nanobiosensors are a preferred choice thanks to their advantages in terms of 
simplicity, robustness, low cost, miniaturization capability, and integration in 
microfabricated devices.

Historically, carbon has been widely used as electrode material due to its 
desirable properties for electrochemical applications. Available in a variety of 
forms, carbon electrodes are recognized as versatile and easy handling devices, 
also praised by their rich surface chemistry which has been exploited to influence 
surface reactivity. More recently, the discovery and popularization of carbon 
nanotubes (CNTs) has fostered their use as electrode materials, improving 
reference properties, and propelling in an unprecedented way their electrochemical 
and electroanalytical applications. CNTs nanometric size and high aspect ratio 
are the distinct features which have contributed in a larger degree to innovate in 
electrochemical applications.

The doctoral thesis of Mercè Pacios aims at exploiting the properties of CNTs 
to design novel electrochemical (bio)sensing devices. Thanks to the prominent 
electrochemical properties of carbon nanotubes, the design of diverse electrode 
configurations was possible. This fact, combined with their chemical properties 
and (bio)functionalization versatility, have made these materials ideal candidates 
for the development of electrochemical biosensors.

In summary, CNTs have been assayed as electrochemical transducers, 
finding the factors that most influence the electrode activity. The possibility 
to arrange CNTs in different geometrical layouts also permitted the design of 
successively improved transducer platforms and biosensing devices, specially 
those incorporating enzymes, proteins, and DNA. Exploiting the semiconductor 
character of CNTs, a last variant has been assayed, which is the field effect 
transistor configuration (FET). The CNT-FET device, optimized for operating in 
liquid environment, was used to probe in real-time protein/CNT adsorption and 
protein/aptamer interactions. Results of this thesis work have shown that these 
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electrochemical and electronic CNT devices can indeed become highly promising 
for biomolecule sensing and for the sensitive monitoring of biological processes. 
Throughout this work, new and unexpected gateways have been opened to keep 
and continue exploring the fascinating world of nanoscience.

Barcelona, May 2012 Dr. Maria José Esplandiu Egido
 Dr. Manel del Valle Zafra
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Carbon nanotubes (CNTs) have become one of the most exciting and extensively 
studied materials of the last two decades. They have captured the interest as 
nanoscale materials due to their nanometric structure and their impressive list of 
superlative and outstanding properties. All these ingredients have encouraged their 
exploitation for promising applications. One of the most interesting ones is related 
with the use of CNTs as electrochemical platforms for biosensing purposes, the 
topic in which the present thesis is framed. Accordingly, the main aim of this 
introductory chapter is to explain the fundamental concepts of the building blocks 
that constitute this thesis. Therefore, Sect. 1.1 introduces the transducer element: 
carbon nanotubes (CNT). In this section, the properties of CNTs, their synthesis 
and purification are explained. Section 1.2 describes the different carbon nanotube 
platforms developed for biosensor purposes and their fundamentals. Section 1.3 
describes the biological recognition elements used for sensing events on the dif-
ferent CNT platforms. Finally, Sect. 1.4 provides an overview of the fundamentals 
of the main techniques that have allowed characterizing the biosensor devices and 
following the sensing events.

1.1  Novel Sensing Materials

Nanoscience and Nanotechnology address the study, control, manipulation, and 
assembly of nanometre(nm) scale components into materials, systems and devices 
for human interest and needs [1]. The rapid progress of nanotechnology and 
advanced nanomaterial production offer significant opportunities for designing 
powerful sensing devices with enhanced performances. Such nanomaterials can 
exhibit properties and functions different from the ones corresponding to bulk or 
macroscopic version of them. Additionally, such nanostructures can become suit-
able materials that favour the integration with biomaterials or biological systems. 
Under this context, carbon nanotubes have been exploited as a novel material with 
huge potential in bioanalytical and biosensing applications.
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2 1 Introduction

1.1.1 Carbon Nanotubes: Structure and Properties  
of Carbon Nanotubes

This section will be addressed to the discovery, structure and properties of carbon 
nanotubes. Specifically, special attention will be given to the electronic, mechani-
cal, chemical, electrochemical and optical properties which lead to immediate 
applications of the CNTs.

1.1.1.1 Discovery, Structure and Electronic Properties

The ability to form very long chains interconnecting C–C covalent bonds allows 
carbon to form an almost infinite number of compounds. Being one of the most 
versatile elements, carbon is the chemical basis of all known living systems on 
Earth; it is the fundamental element of many important biological compounds 
including sugars, DNA and proteins.

Until few decades ago, it was thought that there were only three structur-
ally different forms or allotropes of carbon since they were abundant in nature: 
the hardest substance, diamond; one of the softest known substances, the layered 
graphite and the non-crystalline form, amorphous carbon. However, in the last 
time we have been witnesses of the discovery of two other carbon allotropes, the 
fullerene and the carbon nanotubes.

The true identity of the discoverers of carbon nanotubes is a subject of some 
controversy. For years, scientists assumed that Sumio Iijima, a Japanese physi-
cist, had discovered CNTs in 1991. He published a paper describing his discovery 
which initiated a flurry of excitement and could be credited by inspiring the many 
scientists now studying applications of carbon nanotubes. Though Iijima has been 
given much of the credit for discovering carbon nanotubes, it turns out that the 
timeline of CNTs goes back much further than 1991.

In 1952, two Russian scientists gave the world its first clear look at carbon 
nanotubes. LV Radushkevich and VM Lukyanovich published clear images 
showing multi-walled carbon nanotubes (MWNTs) with a 50 nm diameter (the 
first known, transmission electron microscope images of carbon nanotubes). 
Unfortunately, their findings were not given much publicity: their paper was in 
Russian, published in a Russian journal (Journal of Physical Chemistry of Russia), 
and was the period of the Cold War.

Before they came to be known as carbon nanotubes, in 1976, Endo, Koyama 
and Oberlin, observed hollow tubes of rolled up graphite sheets synthesised by 
a chemical vapour-growth technique [2]. The first specimens observed would 
later come to be known as single-walled carbon nanotubes (SWNTs). The three 
scientists were also the first ones to show images of a nanotube with a solitary 
graphene wall.

In 1981, Russian scientists published more findings. The carbon multi-layer 
tubular crystals (as they were known then) were made by rolling graphene layers 
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into cylindrical shapes. In 1987, Howard Tennet was given a patent for his cylin-
drical discrete carbon fibrils.

In 1985 the three Nobel Price Winners, Robert F. Curl, Sir Harold W. Kroto and 
Richard E. Smalley performed experiments that aimed at understanding the mech-
anisms by which long chained carbon molecules are formed in interstellar space 
and circumstellar shells. Graphite was vaporized by laser irradiation, producing 
a remarkably stable cluster consisting of 60 carbon atoms: the first buckminster-
fullerene C60 [3].

The research gained new impetus when it was shown in 1990 that C60 could 
be produced in a simple arc-evaporation apparatus readily available in all labo-
ratories. It was just by analysing samples from such evaporator that the Japanese 
scientist Sumio Iijima of the NEC Corporation discovered fullerene-related carbon 
nanotubes in 1991 [4]. These were elongated fullerenes with diameters as small as 
0.7 nm and lengths of up to several microns which were termed carbon nanotubes.

The graphene layers have become the starting point to explain the structure of 
carbon nanotubes. A single-walled carbon nanotube is a rolled-up tubular shell 
of graphene sheet which is made up of benzene-type hexagonal rings of carbon 
atoms. The structure is conveniently expressed in terms of a one-dimensional unit 
cell. Indeed, the appearance of a closed cage in CNTs can be easily rationalized 
by considering the presence of high energy dangling bonds at the boundaries of a 
finite graphene layer. The total energy of carbon atoms in a layer can be reduced 
by promoting the formation of a closed structure which eliminates the dangling 
bonds, even at the expense of increasing the strain energy.

The way the graphene sheet is wrapped up can be described by a pair of indi-
ces (n, m) that define the chiral vector, �C = n�a1 + m�a2, in which �a1 and �a2 are the 
basis vectors of the hexagonal graphene lattice [5–10] as shown in Fig. 1.1. Three 
different types of nanotube structures can be generated by rolling up the graphene 
layer: zigzag (m = 0), armchair (n = m) and chiral nanotubes (the rest of vectors).

Although CNTs are closely related to 2D graphene, the tube curvature and the 
quantum confinement1 in the circumferential direction of the nanotube bring about 
the unique properties that make CNTs different from graphene. One of these unu-
sual properties is the electronic conductivity which strongly depends on the chiral-
ity and CNT diameter. CNTs can exhibit singular electronic band structures and 
can show metallic and semiconducting behaviour. As a general rule, (n, m) tubes 
with n − m being an integer multiple of 3 are metallic while the remaining tubes 
are semiconducting. The band gap of semiconducting tubes can be approximated 
by the relation Eg = 0.8 eV/d, with d being the diameter of the nanotube [11, 12]. 
Therefore, the bigger the diameter, the more metallic behaviour is found.

The verification of the electronic properties of carbon nanotubes was of great 
interest in light of the theoretical predictions. It turned out to be very challenging 
to measure them due to the small diameter of the tubes. At the beginning, many of 

1 The electron wavelength around the circumference of a nanotube is quantized due to periodic 
boundary conditions. Along the tube the electrons are not confined.
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the studies on the electrons properties were on bulk CNT material by performing, 
for instance, electron spin resonance. Then, a more sophisticated methodology was 
employed based on scanning tunnelling microscopy (STM) which allowed 
addressing individual carbon nanotubes. The tip of the STM was used as a spectro-
scopic probe to collect the tunnelling conductance of each tube, providing a direct 
measure of the local electronic density of states (DOS)2 of the nanotube. Since the 
STM has the additional power to obtain atomically resolved images of the tube’s 
hexagon lattice, the electronic structure could be correlated with the chiral struc-
ture of the tube and with the carbon nanotube semiconducting or metallic 
properties.

Figure 1.2 shows the density of electronic states for a metallic and a semi-
conducting carbon nanotube. The DOS is not a continuous function of energy 
as in the case of bulk 3D materials (e.g. graphite) but they present discontinu-
ous spikes which are typically present in one-dimensional materials (Van Hove 
singularities).

2 Density of states (DOS) of a system describes the number of electron states per unit volume 
and per unit energy that are available to be occupied.

Fig. 1.1  Roll-up of a graphene sheet leading to three different types of SWNTs. Reprinted with 
permission from Ref. [10]
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Another way to verify the electronic properties of carbon nanotubes is by per-
forming electron transport studies by contacting them in a field-effect transistor 
(FET) configuration. In this configuration, three electrodes are employed. Two 
of them (source and drain electrodes) are used to contact the nanotube and allow 
the flow of current through the tube when a voltage is applied between them. The 
third electrode (gate) is separated from the nanotube by a dielectric, and when a 
voltage is applied through such electrode, a modulation of the tube current is pro-
duced. The charge carriers of the carbon nanotube are modulated in a big extent 
if the contacted nanotube is a semiconducting but the nanotube conductance 
remains almost constant if the nanotube is metallic. Therefore, by sweeping the 

Fig. 1.2  Density of states (DOS) for a metallic (a) and semiconducting (b) carbon nanotube 
with the sharp Van Hove singularities. The density of states at the Fermi energy (E = 0) (Fermi 
energy is the energy of the highest occupied state at the absolute zero temperature.) for the metal-
lic tube is finite but zero for the semiconducting one, providing a band-gap in the latter case. The 
DOS at the right of the Fermi energy are part of the conduction band (unoccupied states) whereas 
the one at the left corresponds to the valence band (occupied states)
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