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Preface

The quasicrystal community comprises mathematicians, physicists, chemists,
materials scientists, and a handful of crystallographers. This diversity is re-
flected in more than 10,000 publications reporting 25 years of quasicrystal
research. Always missing has been a monograph on the “Crystallography of
Quasicrystals,” a book presenting the main concepts, methods and structures
in a self-consistent unified way; a book that translates the terminology and
way of thinking of all these specialists from different fields into that of crystal-
lographers, in order to look at detailed problems as well as at the big picture
from a structural point of view.

Once Albert Einstein pointed out: “As far as the laws of mathematics refer
to reality, they are not certain; as far as they are certain, they do not refer to
reality.” Accordingly, this book is aimed at bridging the gap between the ideal
mathematical and physical constructs and the real quasicrystals of intricate
complexity, and, last but not the least, providing a toolbox for tackling the
structure analysis of real quasicrystals.

The book consists of three parts. The part “Concepts” treats the properties
of tilings and coverings. If decorated by polyhedral clusters, these can be
used as models for quasiperiodic structures. The higher-dimensional approach,
central to the crystallography of quasicrystals, is also in the center of this part.

The part “Methods” discusses experimental techniques for the study of
real quasicrystals as well as power and limits of methods for their structural
analysis. What can we know about a quasicrystal structure and what do we
want to know, why, and what for, this is the guideline.

The part “Structures” presents examples of quasicrystal structures, fol-
lowed by a discussion of phase stability and transformations from a microscop-
ical point of view. It ends with a chapter on soft quasicrystals and artificially
fabricated macroscopic structures that can be used as photonic or phononic
quasicrystals.



VI Preface

This book is intended for researchers in the field of quasicrystals and all
scientists and graduate students who are interested in the crystallography of
quasicrystals.

Zürich, Walter Steurer
June 2009 Sofia Deloudi
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2 Part I Concepts

In this first part of the book, the basic concepts and tools are presented for
the description of quasicrystals and their structurally closely related periodic
approximants. We will use both d-dimensional (dD) and n-dimensional (nD)
approaches, where d is the dimension of the physical space and n that of the
higher-dimensional embedding space (n > d).

In dD physical space, quasiperiodic structures can be described based on
tilings or coverings. By tiling we mean a gapless packing of non-overlapping
copies of a finite number of unit tiles. In analogy to a crystallographic lattice,
such a tiling may be seen as a quasilattice with more than one unit cell of gen-
eral shape. In a covering, one or more types of partially overlapping covering
clusters fully cover a tiling or quasiperiodic pattern. In the nD description,
dD quasiperiodic structures result from irrational physical-space cuts of ap-
propriate periodic nD hypercrystal structures. Rational approximants can be
obtained in the same way after shearing hypercrystal structures into the re-
spective rational cut orientations.

In the nD approach, otherwise hidden structural correlations are revealed.
For instance, the formation of diffraction patterns with Bragg reflections and
5-fold symmetry, causing so much controversy in the first time after the discov-
ery of quasicrystals,1 can be easily explained in this way. The nD approach
also clearly identifies a particular kind of correlated atomic jumps (phason
flips) as originating from phason modes, which are excitations already known
from the study of incommensurately modulated structures. Despite the power
and elegance of the nD approach, one has to keep in mind, however, that real
quasicrystals are 3D objects and that their physical interactions take place in
three dimensions, indeed.

What is a Crystal?

Before we define the term quasicrystal we should clarify what we mean by
crystal and nD (hyper)crystal, in general. In the International Tables for Crys-
tallography, Vol A, chapter 8.1 Basic concepts,2 one will find the following:

Crystals are finite real objects in physical space which may be idealized
by infinite three-dimensional periodic crystal structures in point space.
Three-dimensional periodicity means that there are translations among the
symmetry operations of the object with the translation vectors spanning
a three-dimensional space. Extending this concept of crystal structure to
more general periodic objects and to n-dimensional space, one obtains the
following definition:

1 see, e.g., W. Steurer, S. Deloudi (2008): Fascinating Quasicrystals. Acta Crystal-
logr. A 64, 1–11, and references therein.

2 H. Wondratschek: Basic Concepts. In: International Tables for Crystallography,
vol. A, Kluwer Academic Publisher, Dordrecht/Boston/London, pp. 720–740
(2002)



Part I Concepts 3

Definition: An object in n-dimensional point space En is called an
n-dimensional crystallographic pattern or, for short, crystal pattern if
among its symmetry operations
(i) there are n translations, the translation vectors t1, . . . , tn of which are

linearly independent,
(ii) all translation vectors, except the zero vector o, have a length of at least

d > 0.
Condition (i) guarantees the n-dimensional periodicity and thus excludes
subperiodic symmetries like layer groups, rod groups and frieze groups.
Condition (ii) takes into account the finite size of atoms in actual crystals.

A crucial property of ideal, fully ordered crystals of any dimension is that
they possess pure point Fourier spectra. This means that their diffraction
patterns show Bragg reflections (Dirac δ-peaks) only, and no structural diffuse
scattering. A real crystal can be described by comparing it with the model
of an ideal crystal and by classifying the deviations from it. In the following,
some terms are listed which are used for the description of real crystals or
their idealized models:

Ideal crystal The counterpart to a real crystal. Infinite mathematical object
with an idealized crystal structure; an ideal crystal can be ordered or
disordered (disordered ideal crystal); if it is disordered, it is not periodic
anymore, however, it has a periodic average structure.

Real crystal The counterpart to an ideal crystal. Really existing crystal
which can be perfect or imperfect.

Perfect crystal Crystal in thermodynamic equilibrium, which can be or-
dered or disordered; the only defects possible are point defects such as
thermal vacancies, impurities.

Imperfect crystal Crystal containing additionally defects that are not in
thermodynamic equilibrium such as dislocations.

Nanocrystal Real crystal with dimensions on the scale of nanometers; due
to the large surface area, its structure may fundamentally differ from that
of larger crystals with the same composition and thermal history.

Metacrystal Crystal consisting of building units other than atoms (ions,
molecules), such as photonic or phononic crystals.

What is a Quasicrystal?

One of the terms missing in the above list is aperiodic crystal which is used as
hypernym for incommensurately modulated structures (IMS), composite crys-
tals (CS), and quasicrystals QC. Although their structures lack dD transla-
tional periodicity, their Fourier spectra show Bragg peaks only. This property
has been used by the IUCr Ad-interim Commission on Aperiodic Crystals to
identify aperiodic crystals by their essentially discrete diffraction diagram.3

3 Ad interim Commission on Aperiodic Crystals. Acta Crystallogr. A 48, 928 (1992)
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Consequently, dD translational periodicity is no more seen as a necessary
condition for crystallinity. The reciprocal space definition of a crystal by its
spectral properties can be much simpler than the one based on direct space.
Additionally, it has the advantage of being directly accessible experimentally
by diffraction methods.

However pragmatic this definition may be, it is also fuzzy. The term diffrac-
tion diagram refers to an experimentally obtained image, but does not take
into account that the shapes of reflections depend on the kind of radiation
used, the resolution and dynamic range of the detector as well as the quality
and size of the crystal studied. A strongly absorbing, large, and irregularly
shaped crystal of poor quality, for instance, would not at all give an essentially
discrete diffraction diagram even for simple periodic structures.

Consequently, the concept of an aperiodic crystal has to refer to an ideal
aperiodic crystal of infinite size and to its Fourier spectrum rather than to its
diffraction image. A definition of the different types of aperiodic crystals in
general and of quasicrystals in particular will be given in chapter 3.

How do we use the term quasicrystal in this book? By the term
quasicrystal we denote real crystals with diffraction patterns showing non-
crystallographic symmetry. This experiment-related reciprocal space definition
of quasicrystals makes symmetry analysis simple and allows the application
of tools that are well established in standard crystal structure analysis.

We clearly want to distinguish between quasicrystals (QC) in this meaning
and the other kinds of aperiodic crystals with crystallographic symmetry such
as incommensurately modulated structures (IMS) and composite structures
(CS). In the mathematical meaning of the term quasiperiodicity, all three of
them are quasiperiodic structures, which have some similarities in their higher-
dimensional description. The main difference between a QC and an IMS is that
an IMS can be described as modulation of a periodic crystal structure. If the
modulation amplitude approaches zero, the periodic basic structure of the
IMS is obtained. A CS, on the other hand, can be described as, sometimes
mutually modulated, intergrowth of periodic structures. Such a direct one-to-
one relationship to periodic structures is not possible in the case of QC with
non-crystallographic symmetry.

Furthermore, for both IMS and CS, the orientational (rotational point)
symmetry does not place any constraint on the irrational length scales in-
volved. This is different for QC, where, for instance, the number τ = 2 cos π/5
is related to 5-fold rotational symmetry.

Finally, we do not use the terms quasicrystal and quasiperiodic struc-
ture synonymously. QC may have strictly quasiperiodic structures with non-
crystallographic symmetry in an idealized description. However, their structure
may also be quasiperiodic on average only; or, even only somehow related to
quasiperiodicity. Strictly quasiperiodic structures must obey the closeness con-
dition in the nD description, this may not be the case for the structure of real
QC, which then would correspond to a kind of lock-in state.
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Structural Complexity

Unary phases A: If, due to only isotropic interactions, each atom is equally
densely surrounded by the other atoms in the first coordination shell, dense
sphere packings are the consequence. Atomic environment types (AET) can
either be cuboctahedra, such as in fcc cF4-Al, or disheptahedra, such as in
hcp hP2-Mg, with the coordination number CN=12 in both cases. In case of
anisotropic interactions (directional bonding, magnetic interactions, dispro-
portionation under pressure, etc.), more complex structures can form such as
cI58-Mn or oC84-Cs-III.4 Anisotropic interactions, however, can also lead to
the geometrically simplest possible structure, that of cP1-Po.5

Binary phases A–B : In a binary intermetallic compound AxBy, each
atom has to be surrounded by at least some atoms of the other species in
order to maximize the number of attractive interactions, otherwise the pure
element phases would separate. Stoichiometry, atomic size ratios, direction-
ality of atomic interactions, and the electronic band structure determine the
respective AET. These may comprise several coordination shells and are usu-
ally called clusters.

The size of the unit cell of an intermetallic compound is determined by the
most efficient packing of its constituting AET (clusters), which is that with
the lowest free energy, of course. Consequently, the most efficient packing can
be quite different for high- and low-temperature phases due to the entropical
contributions of thermal vibrations and chemical disorder. The complexity
of binary intermetallic compounds ranges between cP2-NiAl and mC7,448-
Yb2Cu9.6

Ternary phases A-B-C : On the one hand, three different constituents
give more flexibility in optimizing interactions. On the other hand, particularly
in the case of repulsive interactions between two of the three atom types, it
can get much more difficult to realize the most efficient packing. More different
AET or clusters may be needed to create the optimum environments of A, B,
and C. The complexity of ternary intermetallic compounds ranges between
hP3-BaPtSb7 and cF23,158-Al55.4Cu5.4Ta39.1.8

4 McMahon, M.I., Nelmes, R.J., Rekhi, S.: Complex Crystal Structure of Cesium-
III. Phys. Rev. Lett. 87, art. no. 255502 (2001)

5 Legut, D., Friák, M., Šob, M.: Why is polonium simple cubic and so highly
anisotropic? Phys. Rev.Lett. 99, art. no. 016402 (2007)

6 Černý, R., François, M., Yvon, K., Jaccard, D., Walker, E., Petř́ıček, V., Ćısařová,
I., Nissen, H.-U., Wessicken, R.: A single-crystal x-ray and HRTEM study of the
heavy-fermion compound YbCu4.5. J. Condens. Matter 8, 4485–4493 (1996)

7 Villars, P., Calvert, L. D.: Pearsons Handbook of Crystallographic Data for In-
termetallic Phases (ASM, USA), Vols. 1–4 (1991)

8 Weber, T., Dshemuchadse, J., Kobas, M., Conrad, M., Harbrecht, B., Steurer,
W.: Large, larger, largest - a family of cluster-based tantalum-copper-aluminides
with giant unit cells. Part A: Structure solution and refinement. Acta Crystallogr.
B 65, 308–317 (2009)
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In case of quasicrystals, the number of different clusters in a particular
compound is small, usually only one or two. Quasiperiodic long-range or-
der mainly originates from their non-crystallographic symmetry together with
their ability to overlap in a well-defined way with each other.

The question is, how complex are quasicrystals compared to periodic in-
termetallics? Are they more complex than the most complex periodic com-
pounds, such as cF23,158-Al55.4Cu5.4Ta39.1, built from much more different
unit clusters than any QC?

Structural complexity is difficult to define. It is certainly not sufficient to
just count the number of atoms per unit cell, what would be impossible for
a quasicrystal anyway. For instance, the 192 atoms located on the general
Wyckoff position in a cubic unit cell with space group symmetry Fm3̄m,
can be described just by the coordinates of a single atom, i.e. 3 parameters.
For the same number of atoms in a triclinic unit cell and space group P1, 576
parameters would be needed. On the other hand, it is also not just the number
of free parameters. A cubic structure with space group symmetry Fm3̄m and
4 atoms per unit cell needs three parameters, as well, but it seems to be much
simpler. Particularly, because it is just the cubic closest packing.

One possibility for indicating the degree of complexity could be the number
of different AET or the R-atlas. The R-atlas of a structure consists of all
different atomic configurations within a circle of radius R. This may work
for comparing (quasi)periodic structures with (quasi)periodic ones, but not
for comparing periodic with quasiperiodic structures. In the latter case, one
could compare, for instance, the R-atlases up to a maximum R, which is given
by the dimensions of the unit cell.

Another possibility would be to compare the information needed to fully
describe the one and the other structure or to grow it in the computer.
Complexity is reflected in

• broad distribution functions (histogramms) of atomic distances,
• large number of different AETs for each kind of atom,
• large number of independent parameters for the description of a structure,
• low symmetry.

Complexity results from

• unfavorable size ratios of atoms hindering geometrically optimum interac-
tions,

• preference of coordinations (AET, clusters) hindering optimum packings
(e.g. 5-fold symmetry),

• parameters that are close to optimum but not optimal (pseudosymmetry).
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Tilings and Coverings

A packing is an arrangement of non-interpenetrable objects touching each
other. The horror vacui of Mother Nature leads to the densest possible
packings of structural units (atoms, ions, molecules, coordination polyhedra,
atomic clusters, etc.) under constraints such as directional chemical bond-
ing or charge balance. Of course, in the case of real crystals, the structural
units are not hard spheres or rigid entities but usually show some flexibility.
Consequently, the real packing density, i.e. the ratio of the volume filled by
the atoms to the total volume, may differ considerably from that calculated
for rigid spheres. For instance, the packing density Dp = π

√
3/16 = 0.34 of

the diamond structure is very low compared to Dp = π/
√

18 = 0.74 of the
dense sphere packing. However, this low number does not reflect the high
density and hardness of diamond, it just reflects the inappropriateness of the
hard sphere model due to the tetrahedrally oriented, strong covalent bonds.
Dense packing can be entropically disfavored at high temperatures. The bcc
structure type, for instance, with Dp = π

√
3/8 = 0.68, is very common for

high-temperature (HT) phases due to its higher vibrational entropy compared
to hcp or ccp structures.

If the packing density equals one, the objects fill space without gaps and
voids and the packing can be described as tiling. nD periodic tilings can always
be reduced to a packing of copies of a single unit cell, which corresponds to
a nD parallelotope (parallelepiped in 3D, parallelogram in 2D). In case of
quasiperiodic tilings at least two unit cells are needed.

Quasiperiodic tilings can be generated by different methods such as the
(i) substitution method, (ii) tile assembling guided by matching rules, (iii)
the higher-dimensional approach, and (iv) the generalized dual-grid method
[3, 6]. We will discuss the first three methods.

Contrary to packings and tilings, coverings fill the space without gaps but
with partial overlaps. There is always a one-to-one correspondence between
coverings and tilings. Every covering can be represented by a (decorated)
tiling. However, not every tiling can be represented by a covering based on a
finite number of covering clusters. Usually, certain patches of tiles are taken
for the construction of covering clusters.
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In this chapter, we will discuss examples of basic tilings and coverings,
which are crucial for the description and understanding of the quasicrystal
structures known so far. Consequently, the focus will be on tilings with pen-
tagonal, octagonal, decagonal, dodecagonal, and icosahedral diffraction sym-
metry. They all have in common that their scaling symmetries are related to
quadratic irrationalities. This is also the case for the 1D Fibonacci sequence,
which will also serve as an easily accessible and illustrative example for the
different ways to generate and describe quasiperiodic tilings. The heptagonal
(tetrakaidecagonal) tiling, which is based on cubic irrationalities, is discussed
as an example of a different class of tilings. No QC are known yet with this
symmetry, only approximants such as particular borides (see Sect. 8.1).

The reader who is generally interested in tilings is referred to the compre-
hensive book on Tilings and Patterns by Grünbaum and Shephard [9], which
contains a wealth of tilings of all kinds. A few terms used for the description
of tilings are explained in the following [19, 23, 34, 35].

Local isomorphism (LI) Two tilings are locally isomorphic if and only if
every finite region contained in either tiling can also be found, in the
same orientation, in the other. In other words, locally isomorphic tilings
have the same R-atlases for all R, where the R-atlas of a tiling consists
of all its tile patches of radius R. The LI class of a tiling is the set of
all locally isomorphous tilings. Locally isomorphic structures have the
same autocorrelation (Patterson) function, i.e. they are homometric. This
means they also have the same diffraction pattern. Tilings, which are
self-similar, have matching rules and an Ammann quasilattice are said to
belong to the Penrose local isomorphism (PLI) class.

Orientational symmetry The tile edges are oriented along the set of star
vectors defining the orientational (rotational) symmetry N. While there
may be many points in regular tilings reflecting the orientational symme-
try locally, there is usually no point of global symmetry. This is the case for
exceptionally singular tilings. Therefore, the point-group symmetry of a
tiling is better defined in reciprocal space. It is the symmetry of the struc-
ture factor (amplitudes and phases) weighted reciprocal (quasi)lattice. It
can also be defined as the symmetry of the LI class.

Self-similarity There exists a mapping of the tiling onto itself, generating a
tiling with larger tiles. In the case of a substitution tiling, this mapping
is called inflation operation since the size of the tiles is distended. The
inverse operation is deflation which shrinks the tiling in a way that each
old tile of a given shape is decorated in the same way by a patch of the
new smaller tiles. Self-similarity operations must respect matching rules.
Sometimes the terms inflation (deflation) are used just in the opposite
way referring to the increased (decreased) number of tiles generated.

Matching rules These constitute a construction rule forcing quasiperiod-
icity, which can be derived either from substitution (deflation) rules or
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based on the nD approach. Matching rules can be coded either in the
decoration of the tiles or in their shape. A tiling is said to admit per-
fect matching rules of radius R, if all tilings with the same R-atlas are
locally isomorphic to it. A set of matching rules is said to be strong , if
all tilings admitted are quasiperiodic, but not in a single LI class. Weak
matching rules are the least restrictive ones which guarantee quasiperiod-
icity. They allow bounded departures from a perfect quasiperiodic tiling.
The diffraction pattern will show diffuse scattering beside Bragg diffrac-
tion. Non-local matching rules need some global information on the tiling.
They rather allow to check whether a tiling is quasiperiodic than to be
used as a growth rule.

Ammann lines Tilings of the PLI class have the property that, if their unit
tiles are properly decorated by line segments, these join together in the
tiling and form sets of continuous lines (Ammann lines). According to the
orientational symmetry, N sets of parallel, quasiperiodically spaced lines
form, which are called Amman N -grid or Ammann quasilattice. Contrary
to a periodic N grid with non-crystallographic symmetry, it has a finite
number of Voronoi cell shapes.

Remark The explanations, definitions, and descriptions in the gray boxes
are intended to give a simple and intuitive understanding of the concepts.
Therefore, they are not always written in a mathematically rigorous style.

1.1 1D Substitutional Sequences

Besides several quasiperiodic sequences, examples of other kinds of non-
periodic substitutional sequences will also be discussed, showing what they
have in common and what clearly distinguishes them. The quasiperiodic se-
quences treated here are the Fibonacci sequence, which plays an important
role in tilings with 5-fold rotational symmetry, and the Octonacci sequence,
also known as Pell sequence, which is related to tilings with 8-fold symmetry.

The non-quasiperiodic sequences discussed here are the almost periodic
squared Fibonacci sequence and the critical Thue–Morse sequence. The
squared Fibonacci sequence has a fractal atomic surface and a pure point
Fourier spectrum of infinite rank, while the Thue–Morse sequence shows
a singular continuous spectrum. Both are mainly of interest for artificial
structures such as photonic or phononic crystals. Finally, the properties of a
randomized Fibonacci sequence will be shortly discussed.
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1.1.1 Fibonacci Sequence (FS)

The Fibonacci sequence, a 1D quasiperiodic substitutional sequence (see, e.g.,
[26]), can be obtained by iterative application of the substitution rule σ : L �→
LS,S �→ L to the two-letter alphabet {L, S}. The substitution rule can be
alternatively written employing the substitution matrix S

σ :
(

L
S

)
�→
(

1 1
1 0

)

︸ ︷︷ ︸
=S

(
L
S

)
=
(

LS
L

)
. (1.1)

The substitution matrix does not give the order of the letters, just their rel-
ative frequencies in the resulting words wn, which are finite strings of the
two kinds of letters. Longer words can be created by multiple action of the
substitution rule. Thus, wn = σn(L) means the word resulting from the n-th
iteration of σ (L): L �→ LS. The action of the substitution rule is also called
inflation operation as the number of letters is inflated by each step. The FS
can as well be created by recursive concatenation of shorter words according
to the concatenation rule wn+2 = wn+1wn. The generation of the first few
words is shown in Table 1.1.

The frequencies νL
n = Fn+1, ν

S
n = Fn of letters L, S in the word wn =

σn(L), with n ≥ 1, result from the (n − 1)th power of the transposed substi-
tution matrix to (

νL
n

νS
n

)
= (ST )n−1

(
1
1

)
. (1.2)

The Fibonacci numbers Fn+2 = Fn+1 + Fn, with n ≥ 0 and F0 = 0, F1 = 1,
form a series with limn→∞ Fn/Fn−1 = τ = 1.618 . . ., which is called the
golden ratio. Arbitrary Fibonacci numbers can be calculated directly by
Binet’s formula

Table 1.1. Generation of words wn = σn(L) of the Fibonacci sequence by repeated
action of the substitution rule σ(L) = LS, σ(S) = L. νL

n and νS
n denote the frequencies

of L and S in the words wn; Fn are the Fibonacci numbers

n wn+2 = wn+1wn νL
n νS

n

0 L 1 0
1 LS 1 1
2 LSL 2 1
3 LSLLS 3 2
4 LSLLSLSL 5 3
5 LSLLSLSLLSLLS 8 5
6 LSLLSLSLLSLLS︸ ︷︷ ︸LSLLSLSL︸ ︷︷ ︸ 13 8

w5 w4

...
...

...
...

n Fn+1 Fn
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τ−1Sτ−1L

L

τ−2L τ−2S τ−2L

Fig. 1.1. Graphical representation of the substitution rule σ of the Fibonacci se-
quence. Rescaling by a factor 1/τ at each step keeps the total length constant. Shown
is a deflation of the line segment lengths corresponding to an inflation of letters

Fn =
(1 +

√
5)n − (1 −

√
5)n

2n
√

5
. (1.3)

The number τ If a line segment is divided in the golden ratio, then this
golden section has the property that the larger subsegment is related to the
smaller as the whole segment is related to the larger subsegment (Fig. 1.1).
This way of creating harmonic proportions has been widely used in art and ar-
chitecture for millenniums. The symbol τ is derived from the Greek noun τoμή
which means cut, intersection. Alternatively, the symbol φ is used frequently.
τ can be represented by the simplest possible continued fraction expansion

τ = 1 +
1

1 + 1

1+ 1
1+...

. (1.4)

Since it only contains the numeral one, it is the irrational number with the
worst truncated continued fraction approximation. The convergents ci are just
ratios of two successive Fibonacci numbers

c1 = 1, c2 = 1 +
1

1
= 2, c3 = 1 +

1

1 + 1
1

=
3

2
, . . . , cn =

Fn+1

Fn
. (1.5)

This poor convergence is the reason that τ is sometimes called the “most
irrational number.” The strong irrationality may impede the lock-in of in-
commensurate (quasiperiodic) into commensurate (periodic) systems such as
rational approximants.

The scaling properties of the FS can be derived from the eigenvalues λi of the
substitution matrix S. For this purpose, the eigenvalue equation

det |S − λI| = 0, (1.6)

with the unit matrix I, has to be solved. The evaluation of the determinant
yields the characteristic polynomial

λ2 − λ − 1 = 0 (1.7)
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with the eigenvalues λ1 = (1 +
√

5)/2 = 2 cos π/5 = 1.618 . . . = τ , λ2 =
(1−

√
5)/2 = −2 cos 2π/5 = −0.618 . . . = 1− τ = −1/τ and the eigenvectors

v1 =
(

τ
1

)
, v2 =

(
−1/τ

1

)
. (1.8)

We can now explicitly write the eigenvalue equation Svi = λivi for the first
eigenvalue, for instance,

(
1 1
1 0

)(
τ
1

)
=
(

τ + 1
τ

)
= τ

(
τ
1

)
. (1.9)

If we assign long and short line segments, respectively, to the letters L and S

we get the 1D Fibonacci tiling (Fig. 1.1). Relating the eigenvector
(

τ
1

)
to

(
L
S

)
shows that an infinite Fibonacci tiling s(r) is invariant under scaling

with the eigenvalue τ , s(τr) = s(r).
The scaling operation maps each tiling vector r to an already existing

tiling vector τr. Consequently, the ratio of patches of the Fibonacci tiling,
which correspond to words wn and wn+1 created by successive application of
the substitution matrix S, is given by the ratio of the eigenvector components

wn+1

wn
=

L
S

=
LS
L

=
LSL
LS

=
LSLLS
LSL

= · · · =
τ

1
. (1.10)

The length of a word �(wn) can be easily calculated to �(wn) = τnL. The
mean vertex distance, dav, results to

dav = lim
n→∞

Fn+1L + FnS
Fn+1 + Fn

=

{
Fn+1

Fn+2
τ +

Fn

Fn+2

}

S = (3 − τ)S, (1.11)

yielding a vertex point density Dp = 1/dav. dav = aPAS is also the period of
the periodic average structure (PAS) of the FS (see section 3.3). The total
length of the Fibonacci tiling for n line segments reads, in units of S,

xn = (n + 1)(3 − τ) − 1 − 1
τ

{[
n + 1

τ

]
mod 1

}

. (1.12)

Periodic lattices scale with integer factors, thus the eigenvalues are integers.
In case of quasiperiodic “lattices” (quasilattices), the eigenvalues are alge-
braic numbers (Pisot numbers), which have the Pisot–Vijayaraghavan (PV)
property :

λ1 > 1, |λi| < 1 ∀i > 1. (1.13)



1.1 1D Substitutional Sequences 13

Thus, a Pisot number is a real algebraic number larger than one and its
conjugates have an absolute value less than one. Tilings satisfy the PV prop-
erty if they have point Fourier spectra. The PV property connected to this is
that the n-th power of a Pisot number approaches integers as n approaches
infinity. The PV property is a necessary condition for a pure point Fourier
spectrum, however, it is not sufficient. The Thue–Morse sequence, for instance,
has the PV property, but it has a singular continuous Fourier spectrum (see
Sect. 1.1.4).

1.1.2 Octonacci Sequence

The Octonacci sequence, in mathematics better known as Pell sequence,
describes the sequence of spacings of the Ammann quasilattice (8-grid) of
the octagonal Ammann–Beenker tiling (see Sect. 1.2.5). The name Octonacci
is composed from “Octo-” for octagonal and “-acci” from the Fibonacci se-
quence. It can be generated in analogy to the Fibonacci sequence by a sub-
stitution rule σ : L �→ LLS,S �→ L to the two-letter alphabet {L, S} [42]. It
can also be created by recursive concatenation of shorter words according to
the concatenation rule wn+2 = wn+1wn+1wn. The generation of the first few
words is shown in Table 1.2. The substitution matrix S reads

σ :
(

L
S

)
�→
(

2 1
1 0

)

︸ ︷︷ ︸
=S

(
L
S

)
=
(

LLS
L

)
. (1.14)

The evaluation of the determinant of the eigenvalue equation yields the char-
acteristic polynomial

λ2 − 2λ − 1 = 0 (1.15)

Table 1.2. Generation of words wn = σn(S) of the Octonacci sequence by repeated
action of the substitution rule σ(L) = LLS, σ(S) = L. νL

n and νS
n denote the fre-

quencies of L and S, fn are the Pell numbers

n wn+2 = wn+1wn+1wn νL
n νS

n νL
n + νS

n

0 S 0 1 1
1 L 1 0 1
2 LLS 2 1 3
3 LLSLLSL 5 2 7
4 LLSLLSLLLSLLSLLLS 12 5 17
5 LLSLLSLLLSLLSLLLS︸ ︷︷ ︸LLSLLSLLLSLLSLLLS︸ ︷︷ ︸LLSLLSL︸ ︷︷ ︸ 29 12 41

w4 w4 w3

...
...

...
...

n fn gn − fn gn
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with the eigenvalues λ1 = 1 +
√

2 = (2 +
√

8)/2 = 2.41421 . . . = ω, λ2 =
1 −

√
2 = −0.41421 . . ., which satisfy the PV property. The eigenvalue ω can

be represented by the continued fraction expansion

ω = 2 +
1

2 + 1
2+ 1

2+...

. (1.16)

The frequencies νL
n = fn, νS

n = gn −fn of letters L, S in the word wn = σn(S),
with n ≥ 1, result to

(
νL

n + νS
n

νL
n − νS

n

)
= (ST )n−1

(
1
1

)
. (1.17)

The Pell numbers fn+2 = 2fn+1 +fn, with n ≥ 0 and f0 = 0 and f1 = 1, form
a series with limn→∞ fn+1/fn = 1+

√
2 = 2.41421 . . ., which is called the silver

ratio or silver mean. They can be calculated as well by the following equation

fn =
ωn − ω−n

ω − ω−1
(1.18)

The 2D analogue to the Octonacci sequence, a rectangular quasiperiodic
2-grid, can be constructed from the Euclidean product of two tilings that
are each based on the Octonacci sequence. If only even or only odd vertices
are connected by diagonal bonds then the so called Labyrinth tilings Lm and
their duals L∗

m, respectively, result [42].

1.1.3 Squared Fibonacci Sequence

By squaring the substitution matrix S of the Fibonacci sequence, the squared
FS can be obtained

σ :
(

L
S

)
�→
(

2 1
1 1

)

︸ ︷︷ ︸
=S2

(
L
S

)
=
(

LLS
SL

)
. (1.19)

This operation corresponds to the substitution rule σ : L �→ LLS,S �→ SL
applied to the two-letter alphabet {L, S}.

The scaling properties of the squared FS can be derived from the eigenval-
ues λi of the substitution matrix S2. For this purpose, the eigenvalue equation

det |S2 − λI| = 0, (1.20)

with the unit matrix I, has to be solved. The evaluation of the determinant
yields the characteristic polynomial

λ2 − 3λ + 1 = 0 (1.21)

with the eigenvalues λ1 = τ2, λ2 = 1/τ2 = 2 − τ , which satisfy the PV
property, and the same eigenvectors as for the FS. The generation of the first
few words is shown in Table 1.3.
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Table 1.3. Generation of words wn = σn(L) of the squared Fibonacci sequence by
repeated action of the substitution rule σ(L) = LLS, σ(S) = SL or by concatenation.
νL

n and νS
n denote the frequencies of L and S in the words wn, Fn are the Fibonacci

numbers

n wn = wn−1wn−1wn−1, wn = wn−1wn−1 with w0 = L and w0 = S νL
n νS

n

0 L 1 0

1 LLS 2 1

2 LLSLLSSL 5 3

3 LLSLLSSLLLSLLSSLSLLLS 13 8

4 LLSLLSSLLLSLLSSLSLLLS︸ ︷︷ ︸ LLSLLSSLLLSLLSSLSLLLS︸ ︷︷ ︸ SLLLSLLSLLSSL︸ ︷︷ ︸ 34 21

w3 w3 w3

.

.

.
.
.
.

.

.

.
.
.
.

n F2n+1 F2n

Table 1.4. Generation of words wn = σn(A) of the Thue–Morse sequence by re-
peated action of the substitution rule σ(A) = AB, σ(B) = BA or by concatenation

n wn = wn−1wn−1, wn = wn−1wn−1 with w0 = A and w0 = B

0 A
1 AB
2 ABBA
3 ABBABAAB
4 ABBABAABBAABABBA
5 ABBABAABBAABABBA︸ ︷︷ ︸BAABABBAABBABAAB︸ ︷︷ ︸

w4 w4

...
...

1.1.4 Thue–Morse Sequence

The (Prouhet-)Thue–Morse sequence results from the multiple application of
the substitution rule σ : A �→ AB,B �→ BA to the two-letter alphabet {A, B}.
The substitution rule can be alternatively written employing the substitution
matrix S

σ :
(

A
B

)
�→
(

1 1
1 1

)

︸ ︷︷ ︸
=S

(
A
B

)
=
(

AB
BA

)
. (1.22)

The frequencies in the sequence of the letters A and B are equal. The length of
the sequence after the n-th iteration is 2n. The Thue–Morse sequence can also
be generated by concatenation: wn+1 = wnwn, wn+1 = wnwn with w0 = A
and w0 = B (Table 1.4).
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The characteristic polynomial λ2−2λ = 0 leads to the eigenvalues λ1 = 2 and
λ2 = 0. Although these numbers show the PV property, the Fourier spectrum
of the TMS can be singular continuous without any Bragg peaks. If we assign
intervals of a given length to the letters A and B, then every other vertex
belongs to a periodic substructure of period A+B. This is also the size of the
unit cell of the PAS, which contains two further vertices at distances A and
B, respectively, from its origin. All vertices of the PAS are equally weighted.
The Bragg peaks, which would result from the PAS, are destroyed for special
values of A and B by the special order of the Thue–Morse sequence leading
to a singular continuous Fourier spectrum. The broad peaks split into more
and more peaks if the resolution is increased. In the generic case, however,
a Fourier module exists beside the singular continuous spectrum. Depending
on the decoration, the Thue–Morse sequence will show Bragg peaks besides
the singular continuous spectrum (see Fig. 6.2).

1.1.5 1D Random Sequences

It is not possible to say much more about general 1D random sequences than
that their Fourier spectra will be absolutely continuous. However, depending
on the parameters (number of prototiles, frequencies, correlations), the spectra
can show rather narrow peaks for particular reciprocal lattice vectors. General
formulas have been derived for different cases of 1D random sequences [15].

The diffraction pattern of a FS, decorated with Al atoms and randomized
by a large number of phason flips, is shown in Fig. 1.2. Although the Fourier
spectrum of such a random sequence is absolutely continuous, it is peaked for
reciprocal space vectors of the type m/L and n/S with m ≈ nτ , with m and
n two successive Fibonacci numbers.

The continuous diffuse background under the peaked spectrum of the ran-
domized FS can be described by the relation Idiff ∼ f(h)[1− cos(2πh(L− S)]
(fAl(h) is the atomic form factor of Al, L, and S are the long and short inter-
atomic distances in the Al decorated FS).

1.2 2D Tilings

The symmetry of periodic tilings, point group and plane group (2D space
group), can be given in a straightforward way (see, e.g., Table 1.7). In case of
general quasiperiodic tilings, there is no 2D space or point group symmetry
at all. Some tilings show scaling symmetry. In case of singular tilings, there is
just one point of global point group symmetry other than 1. The orientational
order of equivalent tile edges (“bond-orientational order”), however, is clearly
defined and can be used as one parameter for the classification of tilings. This
means, one takes one type of tile edge, which may be arrowed or not, in all
orientations occurring in the tiling and forms a star. The point symmetry
group of that star is then taken for classifying the symmetry of the tiling.
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Fig. 1.2. Diffraction patterns of a Fibonacci sequence before (top) and after (bottom)
partial randomization (≈ 25% of all tiles have been flipped). The vertices of the
Fibonacci sequence are decorated by Al atoms with the short distance S = 2.4 Å; the
diffraction patterns have been convoluted with a Gaussian with FWHM = 0.001 Å−1

to simulate realistic experimental resolution (courtesy of Th. Weber)

Table 1.5. Point groups of 2D quasiperiodic structures (tilings) (based on [13]).
Besides the general case with n-fold rotational symmetry, a few practically relevant
special cases are given. k denotes the order of the group

Point group type k Conditions n = 5 n = 7 n = 8 n = 10 n = 12 n = 14

nmm 2n n even 8mm 10mm 12mm 14mm

nm 2n n odd 5m 7m

n n 5 7 8 10 12 14

This is related to the autocorrelation (Patterson) function. In Table 1.5, the
possible point symmetry groups of 2D quasiperiodic structures (tilings) are
given.

The general space group symmetries possible for 2D quasiperiodic struc-
tures with rotational symmetry n ≤ 15 are listed in Table 1.6.

By taking the symmetry of the Patterson function for the tiling
symmetry, it is not possible to distinguish between centrosymmetric and
non-centrosymmetric tilings. This means that in the case of 2D tilings only
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Table 1.6. Space groups of 2D quasiperiodic structures (tilings) (based on [32]).
Besides the general case with n-fold rotational symmetry, a few practically relevant
special cases are given. The lattice symmetry is 2n for n odd

Point group Conditions n = 5 n = 7 n = 8 n = 10 n = 12 n = 14

nmm n even p8mm p10mm p12mm p14mm

n = 2p p8gm

nm1 n odd 5m1 7m1

n1m n odd 51m 71m

n p5 p7 p8 p10 p12 p14

even rotational symmetries could be discriminated, both pentagonal and
decagonal tilings have decagonal Patterson symmetry, for instance. The same
is true for the Laue symmetry, which is the symmetry of the intensity weighted
reciprocal space, i.e. of the Bragg intensity distribution.

The symmetry can also be defined for the local isomorphism (LI) class of a
tiling. Then a tiling is said to admit a certain point symmetry, if this symmetry
maps the tiling onto another tiling in the same LI class. The transformed tiling
cannot be distinguished from the original one by any local means, since tilings
of the same LI class are locally indistinguishable from each other. In this
sense, the concept of point symmetry differs for quasiperiodic structures from
periodic ones. The point group of a tiling here is the point group of its LI
class. For a periodic tiling, the LI class consists of only one element, and the
definition of point symmetry reduces to the usual one.

Perhaps the best approach is based on the symmetry of the structure-
factor-weighted reciprocal lattice, which even allows to derive a kind of space
group symmetry. The full equivalence of such a Fourier space approach to a
derivation of space groups in direct space has been demonstrated for periodic
structures by [5] and applied to quasiperiodic structures by [32]. This kind of
space group symmetry corresponds to that which can be obtained from the
higher-dimensional approach (see Chap. 3).

1.2.1 Archimedean Tilings

The Archimedean tilings, which are all periodic, have been derived by Kepler
in analogy to the Archimedean solids (see Sect. 2.1). Three of them are regular,
i.e. consist of congruent regular polygons and show only one type of vertex
configuration. The regular tilings are the triangle tiling 36, the square tiling
44 and the hexagon tiling 63. A vertex configuration nm is defined by the kind
of polygons along a circuit around a vertex. For instance, 63 means that at a
vertex 3 hexagons meet.

The eight semiregular tilings are uniform, i.e. have only one type of ver-
tex (vertex transitive), and consist of two or more regular polygons as tiles.



1.2 2D Tilings 19

a b c

ed f

g h

Fig. 1.3. The eight semiregular Archimedean tilings: (a) Snub hexagonal tiling 34.6,
(b) elongated triangular tiling 33.42, (c) snub square tiling 32.4.3.4, (d) trihexagonal
tiling 3.6.3.6, (e) small rhombitrihexagonal tiling 3.4.6.4, (f) truncated square tiling
4.82, (g) truncated hexagonal tiling 3.122, and (h) great rhombitrihexagonal tiling
4.6.12. The unit cells are outlined by dashed lines

The Archimedean tilings are discussed here since they are quite common in
structures of intermetallic phases and soft QC approximants. Particularly in-
teresting for QC approximants are the tilings 4.82 with octagonal tiles, and
3.12 and 4.6.12, which contain dodecagonal tiles. Some characteristic data of
the semiregular tilings that are depicted in Fig. 1.3 are listed in Table 1.7.

1.2.2 Square Fibonacci Tiling

The square Fibonacci tiling is a simple example of a 2D quasiperiodic tiling
with crystallographic point symmetry (4mm) [24]. It can be generated, for
instance, by superposition of two Fibonacci line grids, which are orthogonal
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Table 1.7. Characteristic data for the eight semiregular Archimedean tilings. The
number of vertices nV per unit cell is given; the density is calculated for a close
packing of equal circles at the vertices. In the second lines, the lattice parameter a
is given for a tile edge length of 1 and the Wyckoff positions occupied are listed [28]

Name Vertex nV Plane Group Density
Confi- a Wyckoff position
guration

Snub hexagonal
tilinga

34.6 6 p6 π
√

3/7 = 0.7773

a =
√

7 6(d) x = 3/7, y = 1/7

Elongated triangular
tiling

33.42 4 c2mm π/(2 +
√

3) = 0.8418

a = 1 4(e) y = (1 +
√

3)/(4 +
2
√

3)

b = 2 +
√

3

Snub square tiling 32.4.3.4 4 p4gm π/(2 +
√

3) = 0.8418

a = (2 +
√

3)1/2 4(c) x = 1 −−1/4

[(2 −
√

3)(2 +
√

3)]1/2

Trihexagonal tilingb 3.6.3.6 3 p6mm π
√

3/8 = 0.6802
a = 2 3(c)

Small rhombitri-
hexagonal tiling

3.4.6.4 6 p6mm π
√

3/(4 + 2
√

3) = 0.7290

a = 1 +
√

3 6(e) x = 1/(3 +
√

3)

Truncated square
tiling

4.82 4 p4mm π/(3 + 2
√

2) = 0.5390

a = 1 +
√

2 4(e) x = 1/(2 + 2
√

2)

Truncated hexagonal
tiling

3.122 6 p6mm π
√

3/(7 + 4
√

3) = 0.3907

a = 2 +
√

2 6(e) x = (1 − 1/
√

3)

Great rhombitri-
hexagonal tiling

4.6.12 12 p6mm π/(3 + 2
√

3) = 0.4860

a = 3 +
√

3 12(f) x = 1/(3
√

3 + 3),
y = x + 1/3

a Two enantiomorphs
b Kagome net; quasiregular tiling because all edges are shared by equal polygons

to each other (Fig. 1.4). The substitution rule, also depicted in Fig. 1.4, can
be written employing the substitution matrix S

S =

⎛

⎝
1 1 1
1 0 0
2 0 1

⎞

⎠, (1.23)

with the characteristic polynom −x3 + 2x2 + 2x− 1 = −(1 + x)(1 − 3x + x2)
and the eigenvalues λ1 = τ2 and λ2 = τ−2 for the irreducible component
(1− 3x + x2). Therefore, the PV property is fulfilled. The tile frequencies are
τ−2 for the large squares, τ−4 for the small squares and 2τ−3 for the rectangles
(independent from their orientation).

The square Fibonacci tiling is quasiperiodic, if based on prototiles of differ-
ent sizes. In case the FS results from a quasiperiodic distribution of two types
of atoms, or atoms and vacancies on a periodic lattice, then one periodic direc-
tion can result. In the example shown in Fig. 1.5, a square lattice is decorated



1.2 2D Tilings 21

Fig. 1.4. The square Fibonacci tiling generated by superposition of two, to each
other orthogonal, Fibonacci line grids. The minimum covering cluster is marked in
the tiling, the inflation rule is shown at right

by full circles (L) and vacancies (S) like a FS in two orthogonal directions and
with one mirror line along one diagonal. One of the two diagonal directions of
the underlying lattice then results to be periodic. This pattern has the prop-
erty that vacancies are never closer to each other than one square diagonal
and that they are fully surrounded by the filled circles with the distance of
one square edge.

Analogously, the 3D cube Fibonacci tiling can be created, which may be
of interest for vacancy ordered structures.

1.2.3 Penrose Tiling (PT)

The Penrose tiling was discovered by Roger Penrose [30] and popularized
by Martin Gardner in the popular scientific journal Scientific American [8].
There are several versions of the PT presented in the book Tilings and Pat-
terns by Grünbaum and Shephard [9]: a pentagon based tiling (P1), a kite
and dart version of it (P2) and a rhomb tiling (P3). All three of them are
mutually locally derivable and belong to the Penrose local isomorphism (PLI)
class. According to its reciprocal space symmetry, the PT is a decagonal
quasiperiodic tiling. The PLI class tilings possess matching rules that force
quasiperiodicity. If the matching rules are relaxed other tilings become possi-
ble, which may be quasiperiodic, periodic, or all kinds of non-periodic up to
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quasiperiodic periodic

Fig. 1.5. Substitutional square Fibonacci tiling. The vertices of a square lattice
are either occupied (full circles) or unoccupied. Along the horizontal and vertical
axes as well as along one diagonal the substitutional sequence (distances between
occupied vertices) is the Fibonacci sequence. Along the other diagonal, the pattern
is periodic

fully random. The binary tiling will be discussed as an example, which may
have some importance for the description of real quasicrystals.

1.2.3.1 Rhomb Penrose Tiling

The rhomb PT [29, 30] can be constructed from two unit tiles: a skinny (acute
angle α = π/5) and a fat rhomb (acute angle α = 2π/5) with equal edge
lengths ar and areas a2

r sin π/5 and a2
r sin 2π/5, respectively. Their areas and

frequencies in the PT are both in the ratio 1 : τ . The construction has to
obey matching rules, which can be derived from the scaling properties of the
PT (Fig. 1.6). The local matching rules are perfect, that means that they
force quasiperiodicity. However, there are no growth rules, which restrain the
growing tiling from running into dead ends.

The eight different vertex configurations and their relative frequencies in
the regular PT are shown in Fig. 1.7. The letter in the symbols indicates the
topology, the upper index gives the number of linkages and the lower index
the number of double arrows [16, 29].
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c

A
A’

ba

Fig. 1.6. Scaling properties of the Penrose tiling. (a) The substitution (inflation)
rule for the rhomb prototiles. In (b) a PT (thin lines) is superposed by another PT
(thick lines) scaled by S, in (c) scaling by S2 is shown. A subset of the vertices of
the scaled tilings are the vertices of the original tiling. The rotoscaling operation S2

is also a symmetry operation of a pentagram (white lines), mapping each vertex of
a pentagram onto another one. This is demonstrated in (c) on the example of the
vertex A which is mapped onto A′ by S2

The set of vertices of the PT, MPT, is a subset of the vector module M ={
r =

∑4
i=0 niarei

∣
∣
∣ei = (cos 2πi/5, sin 2πi/5)

}
. MPT consists of five subsets

MPT = ∪4
k=0Mk with Mk =

{
π‖(rk)

∣
∣
∣π⊥(rk) ∈ Tik, i = 0, . . . , 4

}
(1.24)

and rk =
∑4

j=0 dj (nj + k/5), nj ∈ Z (for the definition of dj see Sect. 3.1).
The i-th triangular subdomain Tik of the k-th pentagonal occupation domain
corresponds to

Tik =
{
t = xiei + xi+1ei+1

∣
∣
∣xi ∈ [0, λk], xi+1 ∈ [0, λk − xi]

}
(1.25)

with λk the radius of a pentagonally shaped occupation domain: λ0 = 0, for
λ1,··· ,4 see Eq. (3.138). Performing the scaling operation SMPT with the matrix

S =

⎛

⎜
⎜
⎝

0 1 0 1̄
0 1 1 1̄
1̄ 1 1 0
1̄ 0 1 0

⎞

⎟
⎟
⎠

D

=

⎛

⎜
⎜
⎝

τ 0 0 0
0 τ 0 0

0 0 − 1
τ 0

0 0 0 − 1
τ

⎞

⎟
⎟
⎠

V

=

(
S‖ 0

0 S⊥

)

V

(1.26)

yields a tiling dual to the original PT, enlarged by a factor τ . The subscript
D refers to the 4D crystallographic basis (D-basis), while subscript V in-
dicates that the vector components refer to a Cartesian coordinate system
(V -basis) (see Sect. 3.1). Here S is applied to the projected 4D crystallo-
graphic basis (D-basis), i.e. the star of four rationally independent basis
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Fig. 1.7. The eight different vertex configurations of the regular Penrose tiling
shown for decorations by arrows (single and double) and by Ammann line segments.
The relative vertex frequencies are given below the vertex symbols. The configura-
tions 5

5S, 4
4K, and 3

3Q transform into star (S), boat (B), and hexagon (H) tiles of the
HBS tiling if those vertices are omitted where only double-arrowed edges meet (see
Sect. 1.2.3.2)

vectors ai = arei, i = 1, . . . , 4. If a 2D Cartesian coordinate system is used,
then the submatrix S‖ has to be applied.

Only scaling by S4n results in a PT (increased by a factor τ4n) of original
orientation. Then the relationship S4nMPT = τ4nMPT holds. S2 maps the ver-
tices of an inverted and by a factor τ2 enlarged PT upon the vertices of the
original PT. This operation corresponds to a hyperbolic rotation in super-
space [20]. The rotoscaling operation Γ (10)S2 leaves the subset of vertices of
a PT forming a pentagram invariant (Fig. 1.6).

By a particular decoration of the unit tiles with line segments, infinite lines
(Ammann lines) are created forming a Fibonacci penta-grid (5-grid, “Am-
mann quasilattice” [23]) (Fig. 1.8). The line segments can act as matching
rules forcing strict quasiperiodicity. In case of simpleton flips, the Ammann
lines are broken (see Fig. 1.8). The dual of the Ammann quasilattice is the
deflation of the original PT.
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Fig. 1.8. The Penrose tiling with Amman lines drawn in. The decoration of the
unit tiles by Ammann line segments and the action of simpleton flips are shown at
the bottom

The third variant of the PT is the kite and dart tiling, denoted P2 tiling
in the book by Grünbaum and Shephard [9]. Its relationship to the rhomb
PT (P3) tiling is shown in Fig. 1.9. Starting with the kite and dart tiling
(Fig. 1.9(a)), we cut the tiles into large acute and small obtuse isosceles tri-
angles as shown in Fig. 1.9(b) and obtain the Robinson triangle tiling. The
edge lengths of the triangles are in the ratio τ . While the black dots form a
sufficient matching rule for the kites and darts, the isosceles triangles need,
additionally, an orientation marker along the edges marked by two filled cir-
cles. In case of the acute triangle, this is an arrow pointing away from the
corner where the isosceles edges meet; in case of the obtuse triangle, it is just
the opposite.

If we fuse now all pairs of baseline connected acute triangles to skinny
rhombs, and pairs of long-edge connected acute triangles together with pairs
of short-edge linked obtuse triangles to fat rhombs, then we end up with a
rhomb PT (Fig. 1.9(c)). The rhomb edge from the marked to the unmarked
vertex also gets an orientation, which is usually marked by a double arrow.


