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PREFACE

This volume entitled “Preferences and Similarities” and read at the
8th International Workshop of the International School for the Syn-
thesis of Expert Knowledge (ISSEK), Udine, Italy, October, 5th—7th,
20006, contains thirteen papers. All papers were thoroughly reviewed by
the scientific program committee after they were presented, and were
carefully prepared for publication. As its preceding ones, this work-
shop was hosted by the Centre International des Sciences Mécaniques
(CISM), and was held in the picturesque Palazzo del Torso, Udine.

The workshop was jointly organised by Professors G. Della Riccia,
University of Udine, D. Dubois, CNRS and University of Toulouse,
R. Kruse, University of Magdeburg, and H.-J. Lenz, Freie Universitdt
Berlin. As the workshop was an invitational one, the four organisers
inwited international research workers with a significant contribution
to the field of interest. This volume focuses on preference and sim-
ilarity, issues that have gained much attention in various scientific
communities over the last couple of years. It is worthwhile men-
tioning, that the scope of similarity and preference is still broadening
due to the exploration of new fields of application. This is caused by
the strong impact of vagueness, imprecision, uncertainty and domi-
nance on human and agent information, communication, planning,
decision, action, and control as well as by the technical progress of
the information technology itself. The subject is equally of interest
to computer scientists, statisticians, operations researchers, experts
in Al, cognitive psychologists and economists. Areas of applications
may include robotics, database and information retrieval, agent and
decision theory, data analysis or data mining. This fact is further-
more evident from the strongly increasing influence of communication
and co-operation in electronic markets using the Internet. Informa-
tion is expected to be available in time, at every site, personalized, and
disseminated to privileged users irrespective of their hardware devices,



cf. SOA, and Web Services. Planning agents and guides are yet other
representatives of this development. If data or information from sev-
eral sources is integrated into a single database and embedded into a
context, the figures can be interpreted and wutilised as knowledge for
planning, decision-making or control. In all these cases preferences
on decision alternatives, and distances or similarities between pairs
of objects measured by corresponding variables are of main interest.
Chapter 1: Similarity, Dominance, Fuzzy Logic and Efficiency.
De Baets, Bernard: Similarity of Fuzzy Sets and Dominance of Ran-
dom Variables: A Quest for Transitivity. The author puts the focus
on the occurrence of various types of transitivity in two relational
frameworks for expressing similarities and preferences in a quantita-
tive way. The first framework is that of fuzzy relations where tran-
sitivity is defined by means of a general conjunction operation. He
discusses two approaches to the measurement of similarity of fuzzy
sets: a logical approach based on bi-residual operators and a cardinal
approach based on fuzzy set cardinalities. The second framework is
that of reciprocal relations; the corresponding notion of transitivity is
cycle-transitivity, a symmetric form of transitivity. It plays a cru-
cial role in the description of different types of transitivity arising
i the comparison of random variables in terms of winning proba-
bilities. Ruspini, Enrique: A Logic-Based View of Similarities and
Preferences. After recalling basic concepts of the interpretation of
fuzzy logic in terms of metrics in a finite set of states, he consid-
ers the nature of the information required to generate the underlying
metrics. He concludes that similarity measures are typically derived
from preference relations. The relation between similarity measures
and utility functions is used to extend his similarity-based approach to
marginal and conditional preferences. Some examples motivate basic
requirements for a comprehensive logic-based approach to a calculus
of similarity and preferences. Such a formalism allows considering
the relative desirability of attaining potential system states from the
perspective of different preference criteria. Bonnefon, Jean-Frangois,
Dubois, Didier and Fargier, Héléne: An overview of bipolar qualita-
tive decision rules. People often evaluate decisions by listing their
positive and negative features. The problem is then to compare such
sets. Assuming bipolarity of evaluations and qualitative ratings, they
present and axiomatically characterise some decision rules based on



the idea of focusing on the most salient features, that are capable of
handling positive and negative affects. The simplest are extensions of
the mazximin and maximazx criteria to the bipolar case but they suffer
from a lack of discrimination power. In order to overcome this weak-
ness of the decision rules, refinements are proposed, capturing both
the Pareto-efficiency principle and the order-of-magnitude reasoning
principle of neglecting less important criteria. The most decisive rule
uses a lexicographic ranking of the pros and cons. This turns out to
be a special kind of the Cumulative Prospect Theory, and subsumes
the “Take the best” heuristic.

Chapter 2: Uncertainty, Vagueness, Incompleteness, Truthlikeli-
ness and Prozimity. Godo, Luis and Rodriguez, Ricardo O.: Logical
approaches to similarity-based reasoning: An overview. The paper
surveys different approaches to formalize similarity-based reasoning
mainly from the view point of a graded notion of truthlikeliness. The
difference between the traditional concepts of uncertainty and vague-
ness and truthlikeliness is explained. Fuzzy similarity relations are
used to model truthlikeliness with a graded notion. They follow up an
approach, that may be named semantically oriented, which considers
a similarity relation on set of possible worlds rather than on propo-
sitions. This approach has its roots in work on approximate truth by
Ruspini. Finally, the authors analyse non-monotonic similarity-based
reasoning. The idea is to consider various kinds of similarity-based
orderings in order to define non-monotonic consequence relations and
operators for revision. Golinska-Pilarek and Orlowska, Ewa: Logics
of similarity and their dual Tableauz. A Survey. The authors sur-
vey qualitative similarity models for information systems based on
databases from the standpoint of rough sets. Their formal approach
is relevant for information systems with incomplete data and uncer-
tainty of knowledge. Their concept of similarity relations includes a
qualitative degree of similarity as well as the relevant context. In an
aziomatic way they present modal logics characterized by the classes
of relational systems based on a subset of those similarity relations. A
relational inference system for those logics is based on dual tableauz.
Relational proof theory enables the authors to establish a proof sys-
tem for nmon-classical logics—represented as a deduction rule set—in
a modular way. Lenz, Hans-J.: Proxzimities in Statistics: Similarity
and Distance. The author surveys similarity and distance measures



used in statistics for clustering, classification, or multi-dimensional
scaling etc. Such pairwise relations are fulfilling conditions like sym-
metry and reflexivity. Special attention is paid to the type of scales
of a variable (attribute), i.e. nominal (often binary), ordinal, metric
(interval and ratio), and mized types of scales. The paper considers
the algebraic structure of proximities as suggested by Hartigan (1967)
and Cormack (1971), information-theoretic measures as introduced by
Jardine and Sibson (1971), and a probabilistic measure as proposed
by Skarabis (1970) in more detail. This W-distance not only mea-
sures as usual the prorimity between pairs of observations in a given
finite dimensional data space but allows to establish a preorder on
pairs of observations based upon the corresponding probability distri-
bution. This makes it possible to discriminate even between two pairs
of objects that have the same distance value but strongly differ with
respect to the likelihood of the observations.

Chapter 3: Similarity, Independence, Probability and Game The-
ory. Klawonn, Frank and Kruse, Rudolf: Similarity Relations and In-
dependence Concepts. The paper focuses on similarity relations, their
connection to fuzzy systems, and the inherent independence assump-
tion that are implicitly taken in models using possibility theory, belief
functions etc. Motivated by the sound definition of independence in
statistics some approaches to distance-based similarity relations are
proposed and analysed. The results give evidence of strong differences
between the independence concept used in probability theory and useful
for similarity relations. Sudkamp, Tom: Imprecision and Structure in
Modelling Subjective Similarity. This paper generalises feature-based
similarity to gain flexibility in modelling subjective similarity judge-
ments. The presence-absence taxonomic feature approach is extended
to attributes that take partial membership or fuzzy sets as values. The
minimum specificity principle is applied to obtain possibilistic bounds
on the combination of similarity values. Priority and bipolarity are
added to model inter-object relationships and constraints in similar-
ity judgements. Shafer, Glenn: Defensive Forecasting. The theory of
defensive forecasting uses game theory for the notation of probability
thus replacing measure theory by game theory. This approach allows
to prove a classical theorem of probability theory such as the law of
large numbers by a betting strategy that multiplies the capital at risk
by a large factor if the theorem’s prediction fails. Defensive forecast-



ing first identifies a strategy that succeeds if the probabilistic forecasts
are inaccurate and then makes forecasts that will defeat this strategy.
Both betting strategy and forecasts are based on the similarity of the
current and previous situation.

Chapter 4: Argument-based Decision Making, Qualitative Pref-
erences Reasoning, and Label Rankings. Amgoud, Leila and Prade,
Henri: Comparing decisions on the basis of a bipolar typology of argu-
ments. The authors consider argument-based decision-making. They
pick up their former proposal of a typology with eight types of argu-
ments instead of just one, i.e. pro or con. They emphasize the bipolar
nature of selecting alternatives, i.e. by explicit considering prioritised
goals and rejections that are certainly or possibly to be avoided. Deci-
sions can be attacked or supported by arguments, and have a status.
The logic properties of this argumentative framework are presented.
Domshlak, Carmel: A Snapshot on Reasoning with Qualitative pref-
erence Statements in Al. The paper is devoted to the interpretation
and formal reasoning about sets of qualitative preference statements—
generally not complete—in the context of ordinal preferences of a
decision maker. The author sketches a general scheme for reason-
ing about user preferences that unifies the treatment of this cognitive
paradigm in an analogous way as done in the field of artificial intel-
ligence. As up to now no requirements are specified for such systems
i any specific context, the author votes for more interaction between
academics and practioneers. Hillermeier, Fyke and Furnkranz, Jo-
hannes: Learning Preference Models from Data: On the Problem of
Label Rankings and its Variants. In label ranking, the problem is to
learn a ranking function that maps from an instance space to rankings
over a finite set of labels. A ranking function thus defined can be con-
sidered as a generalization of a conventional classification function.
To solve the label ranking problems the authors propose an approach
based on the idea of ranking by pairwise comparison (RPC). Having
a learning sample at hand, first of all, a binary preference relation is
induced by applying a generalisation of pairwise classification. Then
a ranking is derived, by transforming the preference relation. This
procedure can be adapted to different loss functions simply by select-
ing different ranking procedures. Therefore it gives much flexibility.
A related ranking procedure called “ranking through iterated choice”
1s experimentally investigated. Rossi, Francesca: Constraints and



Preferences: Modelling Frameworks and Multi-Agent Settings. The
author aims for a unifying formalism to model preferences and con-
straints and manage them efficiently. The preferences she considers
are of various kinds: qualitative/quantitative, marginal/conditional,
negative/positive. The constraints may be soft or hard. She reviews
existing formalisms for representing both entities, especially soft con-
straints and CP nets. Voting theory comes in when multi agent pref-
erence aggregation is considered. Several semantics for preference
aggregation are proposed, and motions such as incompleteness and
non-manipulability. Arrow’s famous theorem on “Fairness” shows
theoretical limitations for any formalism.

The editors of this volume are very thankful to all our authors for
re-submitting their papers, and Mrs. Angelika Wnuk, Freie Univer-
sitat Berlin, for her diligent work as a workshop convenor. We would
like to thank the following institutions for substantial help on various
levels:

e The International School for the Synthesis of Fxpert Knowledge

(ISSEK) again for promoting the workshop.

e The University of Udine for administrative support.

e The Centre International des Sciences Mécaniques (CISM) for
hosting a group of enthusiastic people with a common interest
in preferences, similarities and cappuccino.

On behalf of all participants we express our deep gratitude to FON-
DAZIONE CASSA di RISPARMIO di UDINE e PORDENONE for
their financial support of our participants.

%/ FONDAZIONE QU

CASSA DI RISPARMIO DI UDINE E PORDENONE

Giacomo Della Riccia (University of Udine)
Didier Dubois (University of Toulouse)
Rudolf Kruse (University of Magdeburg)
Hans-Joachim Lenz (Freie Universitit Berlin)

5th April, 2008
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Similarity of Fuzzy Sets and Dominance of
Random Variables: a Quest for Transitivity

Bernard De Baets

Department of Applied Mathematics, Biometrics and Process Control,
Ghent University, Coupure links 653, B-9000 Gent, Belgium

Abstract We present several relational frameworks for expressing
similarities and preferences in a quantitative way. The main fo-
cus is on the occurrence of various types of transitivity in these
frameworks. The first framework is that of fuzzy relations; the cor-
responding notion of transitivity is C-transitivity, with C' a conjunc-
tor. We discuss two approaches to the measurement of similarity
of fuzzy sets: a logical approach based on biresidual operators and
a cardinal approach based on fuzzy set cardinalities. The second
framework is that of reciprocal relations; the corresponding notion
of transitivity is cycle-transitivity. It plays a crucial role in the de-
scription of different types of transitivity arising in the comparison
of random variables in terms of winning probabilities.

1 Introduction

Comparing objects in order to group together similar ones or distinguish
better from worse is inherent to human activities in general and scientific
disciplines in particular. In this overview paper, we present some relational
frameworks that allow to express the results of such a comparison in a nu-
merical way, typically by means of numbers in the unit interval. A first
framework is that of fuzzy relations and we discuss how it can be used to
develop cardinality-based, i.e. based on the counting of features, similarity
measurement techniques. A second framework is that of reciprocal rela-
tions and we discuss how it can be used to develop methods for comparing
random variables. Rationality considerations demand the presence of some
kind of transitivity. We therefore review in detail the available notions of
transitivity and point out where they occur.

This chapter is organised as follows. In Section 2, we present the two
relational frameworks mentioned, the corresponding notions of transitivity
and the connections between them. In Section 3, we explore the framework
of fuzzy relations and its capacity for expressing the similarity of fuzzy
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sets. Section 4 is dedicated to the framework of reciprocal relations and
its potential for the development of methods for the comparison of random
variables. We wrap up in Section 5 with a short conclusion.

2 Relational frameworks and their transitivity

2.1 Fuzzy relations

Transitivity is an essential property of relations. A (binary) relation R
on a universe X (the universe of discourse or the set of alternatives) is called
transitive if for any (a, b, c) € X? it holds that (a,b) € RA (b,c) € R implies
(a,¢) € R. Identifying R with its characteristic mapping, i.e. defining
R(a,b) = 1if (a,b) € R, and R(a,b) = 0 if (a,b) ¢ R, transitivity can be
stated equivalently as R(a,b) = 1 A R(b,c¢) = 1 implies R(a,c) = 1. Other
equivalent formulations may be devised, such as

(R(a,b) > a A R(b,c) > a) = R(a,c) > «, (1)

for any « €]0,1]. Transitivity can also be expressed in the following func-
tional form

min(R(a,b), R(b,c)) < R(a,c). (2)
Note that on {0, 1}? the minimum operation is nothing else but the Boolean
conjunction.

A fuzzy relation R on X is an X2 — [0, 1] mapping that expresses the
degree of relationship between elements of X: R(a,b) = 0 means a and b
are not related at all, R(a,b) = 1 expresses full relationship, while R(a,b) €
10,1[ indicates a partial degree of relationship only. In fuzzy set theory,
formulation (2) has led to the popular notion of T-transitivity, where a t-
norm is used to generalize Boolean conjunction. A binary operation T :
[0,1]> — [0,1] is called a t-norm if it is increasing in each variable, has
neutral element 1 and is commutative and associative. The three main
continuous t-norms are the minimum operator Tug, the algebraic product
Tp and the Lukasiewicz t-norm 77, (defined by T1,(x,y) = max(x+y—1,0)).
For an excellent monograph on t-norms and t-conorms, we refer to Klement
et al. (2000).

However, we prefer to work with a more general class of operations called
conjunctors. A conjunctor is a binary operation C : [0,1]> — [0,1] that
is increasing in each variable and coincides on {0,1}? with the Boolean
conjunction.

Definition 2.1. Let C be a conjunctor. A fuzzy relation R on X is called
C-transitive if for any (a,b,c) € X3 it holds that

C(R(a,b), R(b,c)) < R(a,c). (3)
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Interesting classes of conjunctors are the classes of semi-copulas, quasi-
copulas, copulas and t-norms. Semi-copulas are nothing else but conjunctors
with neutral element 1 (Durante and Sempi (2005)). Where t-norms have
the additional properties of commutativity and associativity, quasi-copulas
have the 1-Lipschitz property (Genest et al. (1999); Nelsen (1998)). A quasi-
copula is a  semi-copula that is  I-Lipschitz: for any
(z,y,u,v) € [0,1]* it holds that |C(x,u) — C(y,v)| < |z — y| + |u — v|.
If instead of 1-Lipschitz continuity, C satisfies the moderate growth property
(also called 2-monotonicity): for any (x,y,u,v) € [0,1]* such that z < y
and v < v it holds that C(z,v) + C(y,u) < C(z,u) + C(y,v), then C is
called a copula.

Any copula is a quasi-copula, and therefore has the 1-Lipschitz property;
the converse is not true. It is well known that a copula is a t-norm if and
only if it is associative; conversely, a t-norm is a copula if and only if it
is 1-Lipschitz. The t-norms Ty, Tp and Ty, are copulas as well. For any
quasi-copula C' it holds that 71, < C' < Typ. For an excellent monograph on
copulas, we refer to Nelsen (1998).

2.2 Reciprocal relations

Another interesting class of X? — [0,1] mappings is the class of re-
ciprocal relations @ (also called ipsodual relations or probabilistic relations)
satisfying Q(a,b) + Q(b,a) = 1, for any a,b € X. For such relations, it
holds in particular that Q(a,a) = 1/2. Reciprocity is linked with com-
pleteness: let R be a complete ({0, 1}-valued) relation on X, which means
that max(R(a,b), R(b,a)) = 1 for any a,b € X, then R has an equivalent
{0,1/2, 1}-valued reciprocal representation () given by Q(a,b) = 1/2(1 +
R(a,b) — R(b,a)).

Stochastic transitivity Transitivity properties for reciprocal relations
rather have the logical flavor of expression (1). There exist various kinds
of stochastic transitivity for reciprocal relations (David (1963); Monjardet
(1988)). For instance, a reciprocal relation @ on X is called weakly stochastic
transitive if for any (a, b, ¢) € X? it holds that Q(a,b) > 1/2 A Q(b,c) > 1/2
implies Q(a, ¢) > 1/2, which corresponds to the choice of « =1/2in (1). In
De Baets et al. (2006a), the following generalization of stochastic transitivity
was proposed.

Definition 2.2. Let g be an increasing [1/2,1]> — [0,1] mapping such
that g(1/2,1/2) < 1/2. A reciprocal relation @ on X is called g-stochastic
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transitive if for any (a,b,c) € X3 it holds that

(Q(a,b) = 1/2 A Q(b,0) 2 1/2) = Q(a,0) > g(Q(a,0), Q(b,c)).

Note that the condition g(1/2,1/2) < 1/2 ensures that the reciprocal rep-
resentation ) of any transitive complete relation R is always g-stochastic
transitive. In other words, g-stochastic transitivity generalizes transitiv-
ity of complete relations. This definition includes the standard types of
stochastic transitivity (Monjardet (1988)):

(i) strong stochastic transitivity when g = max;
(ii) moderate stochastic transitivity when g = min;
(iii) weak stochastic transitivity when g = 1/2 .

In De Baets et al. (2006a), also a special type of stochastic transitivity
has been introduced.

Definition 2.3. Let g be an increasing [1/2,1]?> — [0, 1] mapping such that
g9(1/2,1/2) =1/2 and ¢(1/2,1) = g(1,1/2) = 1. A reciprocal relation @ on
X is called g-isostochastic transitive if for any (a, b, c) € X? it holds that

(Q(a’ b) > 1/2 A Q(b’ C) > 1/2) = Q(a’ C) = g(Q(a, b)v Q(b7 C)) :

The conditions imposed upon g again ensure that g-isostochastic transitivity
generalizes transitivity of complete relations. Note that for a given map-
ping g, the property of g-isostochastic transitivity is much more restrictive
than the property of g-stochastic transitivity.

FG-transitivity The framework of F'G-transitivity, developed by Swital-
ski (2001, 2003), formally generalizes g-stochastic transitivity in the sense
that Q(a,c) is bounded both from below and above by [1/2,1]* — [0,1]
mappings.

Definition 2.4. Let F and G be two [1/2,1]?> — [0, 1] mappings such that
F(1/2,1/2) < 1/2 < G(1/2,1/2), and G(1/2,1) = G(1,1/2) = G(1,1) = 1
and F' < G. A reciprocal relation @@ on X is called FG-transitive if for any
(a,b,c) € X3 it holds that
(Q(a,b) 21/2 A Q(b,c) 2 1/2)
U
F(Q(a,),Q(b; ¢)) < Q(a, ¢) < G(Q(a,b),Q(b, ¢)) .-
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Cycle-transitivity For a reciprocal relation ), we define for all (a, b, c) €
X3 the following quantities, see De Baets et al. (2006a):

aape = min(Q(a,b), Q(b,c), Q(c,a)),
Bave = median(Q(a,b), Q(b,¢), Q(c, a)),
Yabe = max(Q(a,b),Q(b,c),Q(c,a)).

Let us also denote A = {(x,y,2) € [0,1]* | 2 < y < z}. A function
U : A — R is called an upper bound function if it satisfies:

(i) U(0,0,1) > 0 and U(0,1,1) > 1;

(i) for any (a, 8,7) € A:

The function L : A — R defined by L(o, 3,7) =1-U(1 —~v,1 - 6,1 — «)
is called the dual lower bound function of a given upper bound function U.
Inequality (4) then simply expresses that L < U. Condition (i) again guar-
antees that cycle-transitivity generalizes transitivity of complete relations.

Definition 2.5. A reciprocal relation @ on X is called cycle-transitive w.r.t.
an upper bound function U if for any (a,b,c) € X3 it holds that

L(aabc; ﬂabca ’Vabc) S Aghe + ﬂabc + Yabe — 1 S U(aabca ﬂabca ’Yabc) ) (5)
where L is the dual lower bound function of U.

Due to the built-in duality, it holds that if (5) is true for some (a,b,c),
then this is also the case for any permutation of (a,b,c). In practice, it is
therefore sufficient to check (5) for a single permutation of any (a,b,c) €
X3. Alternatively, due to the same duality, it is also sufficient to verify
the right-hand inequality (or equivalently, the left-hand inequality) for two
permutations of any (a,b,c) € X3 (not being cyclic permutations of one
another), e.g. (a,b,c) and (¢, b,a). Hence, (5) can be replaced by

ape + Bave + Yabe — 1 < U(O‘abCa Babe, ’Vabc) .

Note that a value of U(a, 3,7) equal to 2 is used to express that for the
given values there is no restriction at all (as «+ 5+~ —1 is always bounded
by 2).

Two upper bound functions U; and Us are called equivalent if for any
(o, 3,7) € A it holds that a + 8+ v — 1 < Uy(o,3,7) is equivalent to
a+B+v—1<Us(a,B,7).
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If it happens that in (4) the equality holds for all («, 3,7) € A, then the
upper bound function U is said to be self-dual, since in that case it coincides
with its dual lower bound function L. Consequently, also (5) and (2.2) can
only hold with equality. Furthermore, it then holds that U(0,0,1) = 0 and
U,1,1) =1.

Although C-transitivity is not intended to be applied to reciprocal re-
lations, it can be cast quite nicely into the cycle-transitivity framework
of De Baets et al. (2006a).

Proposition 2.6. Let C be a commutative conjunctor such that C < Thp. A
reciprocal relation Q on X is C-transitive if and only if it is cycle-transitive
w.r.t. the upper bound function U defined by

UC(avﬂ/Y) = min(a+/6_ C(a,6)75+’)’_ 0(577)7’7"_@_ C(’%a)) .

Moreover, if C' is 1-Lipschitz, then Ug is given by

UC(aaﬁa’y) :Oé—f—ﬁ—C(Oé,ﬁ)

Consider the three basic t-norms (copulas) Ty, Tp and T1,:
(i) For C' = T, we immediately obtain as upper bound function the
median (the simplest self-dual upper bound function):

UTM(aaﬁa’y> :B

(ii) For C = Tp, we find

UTP(O[MB?’Y) =a+pf—-aB.
(iii) For C' = Ty, we obtain

. Oé+5 ,ifa+6<17
UTL(Q;677){1 Jifa+8>1.

An equivalent upper bound function is given by Uz, (a, 3,7) = 1.

Cycle-transitivity also incorporates stochastic transitivity, although the
latter fits more naturally in the FG-transitivity framework; in particu-
lar, isostochastic transitivity corresponds to cycle-transitivity w.r.t. par-
ticular self-dual upper bound functions (De Baets et al. (2006a)). We have
shown that cycle-transitivity and F'G-transitivity frameworks cannot easily
be translated into one another, which underlines that these are two essen-
tially different frameworks (De Baets and De Meyer (2005Db)).
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One particular form of stochastic transitivity deserves our attention. A
probabilistic relation @ on X is called partially stochastic transitive (Fish-
burn (1973)) if for any (a,b,c) € X3 it holds that

(Q(a,b) >1/2 A Q(b,c) >1/2) = Q(a,c) > min(Q(a,b),Q(b,c)).

Clearly, it is a slight weakening of moderate stochastic transitivity. In-
terestingly, also this type of transitivity can be expressed elegantly in the
cycle-transitivity framework (De Meyer et al. (2007)) by means of a simple
upper bound function.

Proposition 2.7. Cycle-transitivity w.r.t. the upper bound function Uy
defined by

Ups(a, B,7) =

is equivalent to partial stochastic transitivity.

3 Similarity of fuzzy sets

3.1 Basic notions

Recall that an equivalence relation E on X is a reflexive, symmetric and
transitive relation on X and that there exists a one-to-one correspondence
between equivalence relations on X and partitions of X. In fuzzy set the-
ory, the counterpart of an equivalence relation is a T-equivalence: given
a t-norm 7', a T-equivalence E on X is a fuzzy relation on X that is re-
flexive (E(x,z) = 1), symmetric (E(z,y) = E(y,x)) and T-transitive. A
T-equivalence is called a T-equality if F(z,y) implies = y.

For the prototypical t-norms, it is interesting to note that (see e.g.
De Baets and Mesiar (1997, 2002)):

(i) A fuzzy relation F on X is a Ti-equivalence if and only if d =1 - F
is a pseudo-metric on X.

(ii) A fuzzy relation FE on X is a Tp-equivalence if and only if d = —log E
is a pseudo-metric on X.

(iii) A fuzzy relation F on X is a Th-equivalence if and only if d =1— F
is a pseudo-ultra-metric on X. Another interesting characterization
is that a fuzzy relation E on X is a Tyj-equivalence if and only if
for any a € [0,1] its a-cut E, = {(z,y) € X? | E(z,y) > a} is
an equivalence relation on X. The equivalence classes of F, become
smaller for increasing « leading to the concept of a partition tree (see
e.g. De Meyer et al. (2004)).
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3.2 A logical approach

To any left-continuous t-norm 7', there corresponds a residual implicator
Ir :]0,1]> — [0,1] defined by

Ir(z,y) = sup{z € [0,1] | T(z, 2) <y},

which can be considered as a generalization of Boolean implication. Note
that Ir(xz,y) = 1 if and only if < y. In case y < x, one gets for the
prototypical t-norms: Ing(z,y) = vy, Ir(x,y) = y/x and I, (x,y) = min(l —
z+y,1). An essential property of the residual implicator of a left-continuous
t-norm is related to the classical syllogism:

T(IT(x7y)7IT(ya Z)) < IT(xv Z)) ’

for any (x,vy,2) € [0,1]3. The residual implicator is the main constituent of
the biresidual operator Er : [0,1]2 — [0, 1] defined by

Er(x,y) = min(Ir(z,y), Ir(y, »)) = Ir(max(z, y), min(z, y)) ,

which can be considered as a generalization of Boolean equivalence. Note
that Er(z,y) = 1 if and only if 2 = y. In case 2 # y, one gets for the proto-
typical t-norms: En(x,y) = min(x,y), Ep(x,y) = min(x,y)/ max(z,y) and
Eu(z,y) =1— [z —yl

Of particular importance in this discussion is the fact that &p is a T-
equality on [0,1]. The biresidual operator obviously serves as a means for
measuring equality of membership degrees. Any T-equality F on [0, 1] can
be extended in a natural way to F(X), the class of fuzzy sets in X:

E'(4,B) = inf F(A(x), B(x)).

It then holds that E’ is a T-equality on F(X) if and only if F is a T-equality
on [0,1]. Starting from & we obtain the T-equality ET. A second way of
defining a T-equality on F(X) is by defining

Er(A, B) = T(inf Ir(A(x), B(@)), inf Ir(B(x), A())).

The underlying idea is that in order to measure equality of two (fuzzy) sets
A and B, one should both measure inclusion of A in B, and of B in A. Note
that in general B C ET, while Fyy = EM. These T-equivalences can be
used as a starting point for building metrics on F(X). The above ways of
measuring equality of fuzzy sets are very strict in the sense that the “worst”
element decides upon the value.

Without going into detail, it is worth mentioning that there exist an
appropriate notion of fuzzy partition, called T-partition (De Baets and
Mesiar (1998)), so that there exists a one-to-one correspondence between
T-equalities on X and T-partitions of X (De Baets and Mesiar (2002)).
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3.3 A cardinal approach

Classical cardinality-based similarity measures A common recipe
for comparing objects is to select an appropriate set of features and to
construct for each object a binary vector encoding the presence (1) or ab-
sence (0) of each of these features. Such a binary vector can be formally
identified with the corresponding set of present features. The degree of sim-
ilarity of two objects is then often expressed in terms of the cardinalities
of the latter sets. We focus our attention on a family of [0, 1]-valued simi-
larity measures that are rational expressions in the cardinalities of the sets
involved, see De Baets et al. (2001):

raapttwap+ydanp+z2vaB
t'aap+twap+ydap+zvap’

S(A,B) =

with A, B € P(X) (the powerset of a finite universe X),

aap = min([A\ B, |B\ A]),
wa,p = max(|A\ B[,[B\ 4]),
daB = |ANBJ,

vap = [(AUB),

and xz,t,y,z,2',t',y', 2 € {0,1}. Note that these similarity measures are
symmetric, i.e. S(A, B) = S(B, A) for any A, B € P(X).

Reflexive similarity measures, i.e. S(A,A) = 1 for any A € P(X), are
characterized by y = ¢’ and z = z’. We restrict our attention to the (still
large) subfamily obtained by putting also ¢ = 2 and ¢ = 2’ (De Baets and
De Meyer (2005a); De Baets et al. (to appear)), i.e.

TAAB+Ydap+2vaB

S(A, B) =
(4, B) ¥ Aap+ydap+zvap’

(6)

with Ay p =|AAB| = |A\ B|+|B\ 4|. On the other hand, we allow more
freedom by letting the parameters z, y, z and 2’ take positive real values.
Note that these parameters can always be scaled to the unit interval by
dividing both numerator and denominator of (6) by the greatest among the
parameters. In order to guarantee that S(A, B) € [0, 1], we need to impose
the restriction 0 < x < z’. Since the case x = 2’ leads to trivial measures
taking value 1 only, we consider from here on 0 < x < /. The similarity
measures gathered in Table 1 all belong to family (6); the corresponding
parameter values are indicated in the table.

The Ty.- or Tp-transitive members of family (6) are characterized in the
following proposition (De Baets et al. (to appear)).
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’ Measure \ expression \ T \ x’ \ Y \ z \ T ‘
Jaccard (1908) }ﬁgg} O] 1]0]1]TL
Simple Matching (Sokal and Michener, 1958) | 11281 Tg |1 |1 ]1 [ 1
Dice (1945) oasanesr |0 1] 2]0] -
Rogers and Tanimoto (1960) rs o211 m
Sneath and Sokal (1973) % 02 |1]0]TL
Sneath and Sokal (1973) 1-— % o122 -

Table 1. Some well-known cardinality-based similarity measures.

Proposition 3.1.

(i) The Ty,-transitive members of family (6) are characterized by the nec-
essary and sufficient condition ' > max(y, z).

(ii) The Tp-transitive members of family (6) are characterized by the nec-
essary and sufficient condition x ' > max(y?, 22).

Fuzzy cardinality-based similarity measures Often, the presence or
absence of a feature is not clear-cut and is rather a matter of degree. Hence,
if instead of binary vectors we have to compare vectors with components in
the real unit interval [0, 1] (the higher the number, the more the feature is
present), the need arises to generalize the aforementioned similarity mea-
sures. In fact, in the same way as binary vectors can be identified with
ordinary subsets of a finite universe X, vectors with components in [0, 1]
can be identified with fuzzy sets in X.

In order to generalize cardinality-based similarity measure to fuzzy sets,
we clearly need fuzzification rules that define the cardinality of a fuzzy set
and translate the classical set-theoretic operations to fuzzy sets. As to the
first, we stick to the following simple way of defining the cardinality of
a fuzzy set, also known as the sigma-count of A (Zadeh (1965)): |A| =
> wex A(z). As to the second, we define the intersection of two fuzzy sets
A and B in X in a pointwise manner by AN B(z) = C(A(z), B(z)), for any
2 € X, where C'is a commutative conjunctor. In De Baets et al. (to appear),
we have argued that commutative quasi-copulas are the most appropriate
conjunctors for our purpose. Commutative quasi-copulas not only allow to
introduce set-theoretic operations on fuzzy sets, such as A\ B(x) = A(x) —
C(A(z),B(z)) and A A B(z) = A(x) + B(z) — 2C(A(x), B(x)), they also
preserve classical identities on cardinalities, such as |[A\ B| = |4| — |AN B|
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and |[AA B| = |A\ B| +|B\ A| = |4] + |B| — 2|A N B|. These identities
allow to rewrite and fuzzify family (6) as

z(a+b—2u)+yu+z(n—a—b+u)
x'(a+b—2u)+yu+z(n—a—b+u)

S(A,B) = , (7)

with a = |A], b= |B| and u = |AN B.

Bell-inequalities and preservation of transitivity Studying the tran-
sitivity of (fuzzy) cardinality-based similarity measures inevitably leads to
the verification of inequalities on (fuzzy) cardinalities. We have established
several powerful meta-theorems that provide an efficient and intelligent way
of verifying whether a classical inequality on cardinalities carries over to
fuzzy cardinalities (De Baets et al. (2006b)). These meta-theorems state
that certain classical inequalities are preserved under fuzzification when
modelling fuzzy set intersection by means of a commutative conjunctor that
fulfills a number of Bell-type inequalities.

In Janssens et al. (2004a), we introduced the classical Bell inequalities in
the context of fuzzy probability calculus and proved that the following Bell-
type inequalities for commutative conjunctors are necessary and sufficient
conditions for the corresponding Bell-type inequalities for fuzzy probabilities
to hold. The Bell-type inequalities for a commutative conjunctor C' read as
follows:

By : Tu(p,q) < C(p.q) < Tm(p.q)
BQ :0< p— C(pa q) - C(par) + C(Qa 7‘)
Bs:p+q+r—Clpq —Clp,r)—Clgr) <1

for any p,q,r € [0, 1]. Inequality Bs is fulfilled for any commutative quasi-
copula, while inequality Bs only holds for certain t-norms Janssens et al.
(2004b), including the members of the Frank t-norm family 7% with A <
9+4+/5 (Pykacz and D’Hooghe (2001)). Also note that inequality B; follows
from inequality Bs.

Theorem 3.2. (De Baets et al. (2006b)) Consider a commutative conjunc-
tor I that satisfies Bell inequalities By and Bs. If for any ordinary subsets
A, B and C of an arbitrary finite universe X it holds that

H(IA[ Bl [Cl, [AN B, ]ANC], [BNC],[X]) > 0,

where H denotes a continuous function which is homogeneous in its arqu-
ments, then it also holds for any fuzzy sets in an arbitrary finite universe Y .

If the function H does not depend explicitly upon | X|, then Bell inequal-
ity Bs can be omitted. This meta-theorem allows us to identify conditions
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on the parameters of the members of family (7) leading to 71,-transitive or
Tp-transitive fuzzy similarity measures. As our fuzzification is based on a
commutative quasi-copula C, condition By holds by default. The following
proposition then is an immediate application (De Baets et al. (2006b)).

Proposition 3.3.
(i) Consider a commutative quasi-copula C' that satisfies Bs. The Ti,-
transitive members of family (7) are characterized by x' > max(y, z).
(ii) The Ty -transitive members of family (7) with z = 0 are characterized
by ' > .
(iii) Consider a commutative quasi-copula C' that satisfies Bs. The Tp-
transitive members of family (7) are characterized by x ' > max(y?, 22).
(iv) The Tp-transitive members of family (7) with z = 0 are characterized
by xx’ > y2.

However, as our meta-theorem is very general, it does not necessarily
always provide the strongest results. For instance, tedious and lengthy
direct proofs allow to eliminate condition B3 from the previous theorem,
leading to the following general result (De Baets et al. (2006b)).

Proposition 3.4. Consider a commutative quasi-copula C.
(i) The Ty,-transitive members of family (7) are characterized by the nec-
essary and sufficient condition x’ > max(y, z).
(i) The Tp-transitive members of family (7) are characterized by the nec-
essary and sufficient condition x 2’ > max(y?, 2?).

4 Comparison of random variables

4.1 Dice-transitivity

Consider three dice A, B and C which, instead of the usual numbers,
carry the following integers on their faces:

A={1,3,4,15,16,17}, B={2,10,11,12,13,14}, C ={5,6,7,8,9,18}.

Denoting by P(X,Y') the probability that dice X wins from dice Y, we have
P(A,B) = 20/36, P(B,C) = 25/36 and P(C,A) = 21/36. It is natural
to say that dice X is strictly preferred to dice Y if P(X,Y) > 1/2, which
reflects that dice X wins from dice Y in the long run (or that X statistically
wins from Y, denoted X >, Y). Note that P(Y,X) =1 —P(X,Y) which
implies that the relation > is asymmetric. In the above example, it holds
that A >, B, B >, C and C >, A: the relation >, is not transitive and
forms a cycle. In other words, if we interpret the probabilities P(X,Y") as
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constituents of a reciprocal relation on the set of alternatives {A, B,C},
then this reciprocal relation is even not weakly stochastic transitive.

This example can be generalized as follows: we allow the dice to possess
any number of faces (whether or not this can be materialized) and allow
identical numbers on the faces of a single or multiple dice. In other words,
a generalized dice can be identified with a multiset of integers. Given a
collection of m such generalized dice, we can still build a reciprocal relation
@ containing the winning probabilities for each pair of dice (De Schuymer
et al. (2003)). For any two such dice A and B, we define

Q(A, B) = P{A wins from B} + %P{A and B end in a tie} .

The dice or integer multisets may be identified with independent discrete
random variables that are uniformly distributed on these multisets (i.e. the
probability of an integer is proportional to its number of occurences); the
reciprocal relation @ may be regarded as a quantitative description of the
pairwise comparison of these random variables.

In the characterization of the transitivity of this reciprocal relation,
a type of cycle-transitivity, which can neither be seen as a type of C-
transitivity, nor as a type of F'G-transitivity, has proven to play a pre-
dominant role. For obvious reasons, this new type of transitivity has been
called dice-transitivity.

Definition 4.1. Cycle-transitivity w.r.t. the upper bound function Up de-
fined by

UD(Oﬁﬁv’Y):ﬂ‘i’fY*ﬂ’}/a

is called dice-transitivity.

Dice-transitivity is closely related to Tp-transitivity. However, it uses the
quantities 4 and v instead of the quantities o and /3, and is therefore less
restrictive. Dice-transitivity can be situated between Ty -transitivity and
Tp-transitivity, and also between Tt -transitivity and moderate stochastic
transitivity.

Proposition 4.2. (De Schuymer et al. (2003)) The reciprocal relation gen-
erated by a collection of generalized dice is dice-transitive.

4.2 A method for comparing random variables

Many methods can be established for the comparison of the components
(random variables, r.v.) of a random vector (Xi,...,X,), as there exist
many ways to extract useful information from the joint cumulative distri-
bution function (c.d.f.) Fx, .. x, that characterizes the random vector. A
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first simplification consists in comparing the r.v. two by two. It means that
a method for comparing r.v. should only use the information contained in
the bivariate c.d.f. Fix, x,. Therefore, one can very well ignore the existence
of a multivariate c.d.f. and just describe mutual dependencies between the
r.v. by means of the bivariate c.d.f. Of course one should be aware that
not all choices of bivariate c.d.f. are compatible with a multivariate c.d.f.
The problem of characterizing those ensembles of bivariate c.d.f. that can
be identified with the marginal bivariate c.d.f. of a single multivariate c.d.f.,
is known as the compatibility problem (Nelsen (1998)).

A second simplifying step often made is to bypass the information con-
tained in the bivariate c.d.f. to devise a comparison method that entirely
relies on the one-dimensional marginal c.d.f. In this case there is even not
a compatibility problem, as for any set of univariate c.d.f. Flx,, the prod-
uct Fix, Fx, -+ Fx, is a valid joint c.d.f., namely the one expressing the
independence of the r.v. There are many ways to compare one-dimensional
c.d.f., and by far the simplest one is the method that builds a partial or-
der on the set of r.v. using the principle of first order stochastic dominance
(Levy (1998)). It states that a r.v. X is weakly preferred to a r.v. Y if for
all v € R it holds that Fx(u) < Fy (u). At the extreme end of the chain of
simplifications, are the methods that compare r.v. by means of a character-
istic or a function of some characteristics derived from the one-dimensional
marginal c.d.f. The simplest example is the weak order induced by the
expected values of the r.v.

Proceeding along the line of thought of the previous section, a random
vector (X1, Xs,...,X,,) generates a reciprocal relation by means of the
following recipe.

Definition 4.3. Given a random vector (Xi, Xs,...,X,,), the binary re-
lation @ defined by

1
Q(X:, X,;)=P{X; > X,} + B P{X;=X;}
is a reciprocal relation.

For two discrete r.v. X; and X, Q(X, Xl) can be computed as

Q(Xi, Xj) = > px.x, (k1) + prl,x (k. k),

k>1

with px, x, the joint probability mass function (p.m.f.) of (X;, X;). For
two continuous r.v. X; and X;, Q(X;, X;) can be computed as:

“+o0 x
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with fx, x, the joint probability density function (p.d.f.) of (X;, X;).

For this pairwise comparison, one needs the two-dimensional marginal
distributions. Sklar’s theorem (Sklar (1959); Nelsen (1998)) tells us that if
a joint cumulative distribution function F'x,, x,; has marginals Fx, and Fy;,
then there exists a copula Cj; such that for all z,y:

FXi,Xj (xvy) = CZJ(FXz (517)7 FX]‘ (y)) .

If X; and X; are continuous, then Cj; is unique; otherwise, Cj; is uniquely
determined on Ran(Fx,) x Ran(F;).

As the above comparison method takes into account the bivariate mar-
ginal c.d.f. it takes into account the dependence of the components of
the random vector. The information contained in the reciprocal relation is
therefore much richer than if, for instance, we would have based the com-
parison of X; and X solely on their expected values. Despite the fact that
the dependence structure is entirely captured by the multivariate c.d.f., the
pairwise comparison is only apt to take into account pairwise dependence,
as only bivariate c.d.f. are involved. Indeed, the bivariate c.d.f. do not fully
disclose the dependence structure; the r.v. may even be pairwise indepen-
dent while not mutually independent.

Since the copulas Cj; that couple the univariate marginal c.d.f. into
the bivariate marginal c.d.f. can be different from another, the analysis of
the reciprocal relation and in particular the identification of its transitivity
properties appear rather cumbersome. It is nonetheless possible to state in
general, without making any assumptions on the bivariate c.d.f., that the
probabilistic relation ) generated by an arbitrary random vector always
shows some minimal form of transitivity (De Baets and De Meyer (2008)).

Proposition 4.4. The reciprocal relation Q@ generated by a random vector
is 11, -transitive.

4.3 Artificial coupling of random variables

Our further interest is to study the situation where abstraction is made
that the r.v. are components of a random vector, and all bivariate c.d.f.
are enforced to depend in the same way upon the univariate c.d.f., in other
words, we consider the situation of all copulas being the same, realizing
that this might not be possible at all. In fact, this simplification is equiv-
alent to considering instead of a random vector, a collection of r.v. and to
artificially compare them, all in the same manner and based upon a same
copula. The pairwise comparison then relies upon the knowledge of the one-
dimensional marginal c.d.f. solely, as is the case in stochastic dominance
methods. Our comparison method, however, is not equivalent to any known
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kind of stochastic dominance, but should rather be regarded as a graded
variant of it (see also De Baets and De Meyer (2007)).

The case C = Tp generalizes Proposition 4.2, and applies in particular
to a collection of independent r.v. where all copulas effectively equal Tp.

Proposition 4.5. (De Schuymer et al. (2003, 2005)) The reciprocal rela-
tion @ generated by a collection of r.v. pairwisely coupled by Tp is dice-
transitive, i.e. it is cycle-transitive w.r.t. the upper bound function given by

Up(a,B,7) =B+~ —B7.

Next, we discuss the case when using one of the extreme copulas to artifi-
cially couple the r.v. In case C' = Ty, the r.v. are coupled comonotonically.
Note that this case is possible in reality.

Proposition 4.6. (De Schuymer et al. (2007); De Meyer et al. (2007))
The reciprocal relation @ generated by a collection of r.v. pairwisely coupled
by Ta is cycle-transitive w.r.t. to the upper bound function U given by
Ul(a, B8,7) = min(8+~,1). Cycle-transitivity w.r.t. the upper bound function
U is equivalent to Ty, -transitivity.

In case C' = T1,, the r.v. are coupled countermonotonically. This as-
sumption can never represent a true dependence structure for more than
two r.v., due to the compatibility problem.

Proposition 4.7. (De Schuymer et al. (2007); De Meyer et al. (2007))
The reciprocal relation Q generated by a collection of r.v. pairwisely coupled
by Tv, is partially stochastic transitive, i.e. it is cycle-transitive w.r.t. to the
upper bound function defined by Ups(cv, 8,7) = max(5,7y) = 7.

The proofs of these propositions were first given for discrete uniformly
distributed r.v. (De Schuymer et al. (2003, 2007)). It allowed for an inter-
pretation of the values Q(X;, X;) as winning probabilities in a hypothet-
ical dice game, or equivalently, as a method for the pairwise comparison
of ordered lists of numbers. Subsequently, we have shown that as far as
transitivity is concerned, this situation is generic and therefore character-
izes the type of transitivity observed in general (De Meyer et al. (2007);
De Schuymer et al. (2005)).

The above results can be seen as particular cases of a more general result
(see De Baets and De Meyer (2008)).
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Proposition 4.8. Let C be a commutative copula such that for any n > 1
and forany 0 <z <--- <z, <land 0<y; <--- <y, <1, it holds that

> Cliy) =Y Clan—2iryn-2i-1) — Y C@n—2i-1,Yn—2:)
<C <$n + ) Cl@n2i2,Yn-2i-1) = »_ C(Tn—2i,Yn—2i-1),

Yn + Z C(n—2i—1,Yn—2i—2) — Z Cl(xn—2i-1, yn2z)> , (8)

where the sums extend over all integer values that lead to meaningful indices
of © and y. Then the reciprocal relation ) generated by a collection of
random wvariables pairwisely coupled by C' is cycle-transitive w.r.t. to the
upper bound function U defined by:

UC(a,8,7) =max(B+ C(1 — B,7),7+ C(B,1—7)).

Inequality (8) is called the twisted staircase condition and appears to be
quite complicated. Although its origin is well understood (see De Baets
and De Meyer (2008)), it is not yet clear for which commutative copulas it
holds. We strongly conjecture that it holds for all Frank copulas.

4.4 Comparison of special independent random variables

Dice-transitivity is the generic type of transitivity shared by the recipro-
cal relations generated by a collection of independent r.v. If one considers
independent r.v. with densities all belonging to one of the one-parameter
families in Table 2, the corresponding reciprocal relation shows the corre-
sponding type of cycle-transitivity listed in Table 4.4 (De Schuymer et al.
(2005)).

Note that all upper bound functions in Table 3 are self-dual. More
striking is that the two families of power-law distributions (one-parameter
subfamilies of the two-parameter Beta and Pareto families) and the family
of Gumbel distributions, all yield the same type of transitivity as exponen-
tial distributions, namely cycle-transitivity w.r.t. the self-dual upper bound
function Ug defined by:

Cycle-transitivity w.r.t. Ug can also be expressed as

O‘abcﬂabc"}/abc - (1 - aabc)(l - ﬁabc)(l - ’Yabc) 3
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Table 2. Parametric families of continuous distributions.

Name Density function f(x)

Exponential | Ae™** A>0 x € [0,00]
Beta Az A>0 z € 10,1]
Pareto Az~ (A1) A>0 x € [1,00]
Gumbel pre=H@=N) gme MY ANeER, u>0 x €] — 00, 00|
Uniform 1/a AeR,a>0 z € [MNA+d]
Laplace (e~ l==A/m)y /(2p) AeR, u>0 x €] — 00, 00]
Normal (e=@=2%/20%) )\/org®  AeR,0 >0 x €] —o00,00[

which is equivalent to the notion of multiplicative transitivity of Tanino
(1988). A reciprocal relation @ on X is called multiplicatively transitive if
for any (a,b,c) € X3 it holds that

Qa,c)  Qa,b) Q(b,c)

Qe;a) — Qba) Qle,b)’

In the cases of the unimodal uniform, Gumbel, Laplace and normal
distributions we have fixed one of the two parameters in order to restrict
the family to a one-parameter subfamily, mainly because with two free pa-
rameters, the formulae become utmost cumbersome. The one exception is
the two-dimensional family of normal distributions. In De Schuymer et al.
(2005), we have shown that the corresponding reciprocal relation is in that
case moderately stochastic transitive.

5 Conclusion

We have introduced the reader to two relational frameworks and the wide
variety of transitivity notions available in them. The presentation was rather
dense and more information can be found following the many literature
pointers given.

Anticipating on future work, in particular on applications, we can iden-
tify two important directions. The first direction concerns the use of fuzzy
similarity measures. Moser (2006) has shown recently that the T-equality
E7, with T = Tp or T = Ti,, is positive semi-definite. We are currently
tackling the same question for the fuzzy cardinality-based similarity mea-
sures. Results of this type allow to bridge the gap between the fuzzy set
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Table 3. Cycle-transitivity for the continuous distributions in Table 1.

Name Upper bound function U(«, 3,7)
Exponential
Beta
Pareto af + ay + By — 2a06y
Gumbel

B47 -1+ glmax(y/2(— §) + V2T —7) - 1,0
Uniform B>1/2
a+ﬁf%MMh@a+¢ﬁ—L®P B<1/2

Laplace {6—'_7_1+f_1(f(1_ﬂ)+f(1_7)) B>1/2
ot B (F(0) + £(B) posy

with f1(z) = 1 (1+2) e
Normal {ﬁ—l—’y—l—f—cb((b 1-p)+2(1—-9)) B>1/2
a+ =@ (a)+27(0)) B<1/2

with ®(z) = (vV2r) 1 [T e t/2dt

community and the machine learning community, making some fuzzy sim-
ilarity measures available as potential kernels for the popular kernel-based
learning methods, either on their own or in combination with existing ker-
nels (see e.g. Maenhout et al. (2007) for an application of this type).

The second direction concerns the further exploitation of the results on
the comparison of random variables. As mentioned, the approach followed
here can be seen as a graded variant of the increasingly popular notion of
stochastic dominance. Future research will have to clarify how these graded
variants can be defuzzified in order to come up with meaningful partial
orderings of random variables that are more informative than the classical
notions of stochastic dominance. First results into that direction can be
found in De Baets and De Meyer (2007); De Loof et al. (2006).
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