Information
modelling

A method for improving understanding
and accuracy in your collaboration

Stefan Berner

STEFAN BERNER

Information modelling

A method for improving understanding
and accuracy in your collaboration

vidf

Bibliographic Information published by Die Deutsche Nationalbibliothek
Die Deutsche Nationalbibliothek lists this publication in the Internet at
http://dnb.dnb.de.

ISBN 978-3-7281-3943-6 (Printversion)
ISBN 978-3-7281-3944-3 (E-Book)
DOI-NR. 10.3218 /3944-3

www.vdf.ethz.ch
verlag@vdf.ethz.ch

© 2019, vdf Hochschulverlag AG an der ETH Ziirich

All rights reserved. Nothing from this publication may be reproduced,
stored in computerised systems or published in any form or in any manner,
including electronic, mechanical, reprographic or photographic, without
prior written permission from the publisher.

https://vdf.ch/information-modelling.html
https://vdf.ch/information-modelling-e-book.html

Contents

Preface

Preface to the English edition

Introduction

Good software
Understanding oo

The information model

What is an information model?
Elements of the information model
Quality of the information model
Review of the information model

Using the information model

Working with the model
Information and process model
Use in various scenarios

Experiences with the information model

Resistances
Gains
Conclusion

Appendix

Information model of the information model
Expansion of the information model
Transforming an information model into a data model . .
Example for an implemented information model

Bibliography

Index

EN

15
15
24
33
45

51
51
61
66

73
(0]
80
84

85
85
86
89
93

95
97

Preface

The CEO had a fairly pithy response to the presentation of an infor-
mation model: “That took you four weeks? It’s so clear and obvious,
I’d have been able to do it in an afternoon”. This statement was
probably the highest praise that I have ever received in my work
as an information modeller. The effort we invested in collecting the
information, the painstaking search for (and sometimes coining of)
succinct names as well as the discussions we held to resolve uncer-
tainties and contradictions: None of these things was apparent in
the outcome. We had described the company’s information universe
— as confirmed by the boss — clearly, succinctly and accurately. The
boss understood the statements on the diagram.

That’s what this book is about: How to create shared under-
standing across all levels? And how to document something that
we have all understood? What is the best form of documentation to
ensure that other people have the same understanding of the matter
as quickly as possible? This book is not about the technical ins and
outs of knowledge (storage, data, presentation). Rather, it focusses
on content, the essence and the semantics of information.

This book is intended for everyone involved in the management
of data and information, be they IT specialists, business analysts,
IT organisers, managers or users from the business departments:

e IT specialists will learn the difference between data and in-
formation modelling and the benefits they bring to communi-
cation with I'T novices.

e People involved in IT organisation will acquire a method-
ology and language for communicating concisely and reliably
with IT specialists, as well as with prospective users from the
business departments.

e Business analysts will receive methods and a fitting vocab-
ulary to present the findings of their analysis and modelling

Preface

as simply and accessibly as possible, ensuring that everyone
involved in the process is in the know.

Managers will quickly acquire a tool-kit providing insight
into the requirements and illuminating the solutions. They
can then identify the right solution, without getting bogged
down in the technical details. Doing so allows them to ask the
right questions and to detect and remedy troublesome devel-
opments at an early stage.

Users can identify and verify their own contributions to the
selected solutions. The simple presentation of knowledge
from a user perspective ensures that they feel involved in the
project. They can communicate with IT specialists on a level
playing field and recognise how their personal perspectives of
the informational world are incorporated in future software
products.

Stefan Berner, July 2016

Preface to the English edition

Since the German original was published, information modelling has
been applied in dozens of projects. I'd like to share some feedback
I got from customers:

“Since we began applying the technique of information mod-
elling, we can discuss in meetings without quarrelling about
each term.”

“This model represents the DNA of our enterprise.”

“We were able to solve an issue, that had been bothering us
for years, in just one afternoon.”

I would like to thank my employer foryouandyourcustomers for the
generous support, that made this English version possible.

A special thank you goes to Jonathan Moller, Stephan Miiller,
Christoph Gerber for their input, and to my wife Marie-Theres for
her endurance and understanding for my frequent real and mental
absences.

Stefan Berner, October 2018

Introduction

Good software

Software crises have been around since the first keystroke of code
was written. A variety of studies indicate that between 40 and 80
percent of all IT projects never see the light of day. Although hard
to verify, these figures suggest that billions of euros are being tossed
out the window on poorly conceived software ventures. Developing
proprietary software is risky and generally too expensive. Often,
the use of standard software turns out to be more costly than ex-
pected, and the additional expenditures associated with rolling it
out will ultimately exceed any savings from the lower cost of pur-
chase. Software systems don’t fit together; interfaces are complex
and buggy. There is no shortage of compelling examples that the
quantum leaps in computer sciences refer more to the technology
(storage, clock rate, conductivity) than they do to the content or
quality.

There are, however, documented, established methods for the de-
velopment of good software. So why is so much of it poor, although
it was developed by specialists using proven techniques? Assisted
by business analysts, users describe the requirements and concepts
that — from their perspective — reflect their wishes correctly and
completely. Highly qualified computer scientists use modern meth-
ods and tools to write software that meets these requirements. Yet
still the customers are still dissatisfied. Even leaving aside the usual
suspects and sources of errors like carelessness, ineptitude, sloppi-
ness, poor work ethic, a haphazardly assembled team and suchlike,
it is far from unusual that good people do good work and still pro-
duce an unacceptable result.

Software quality rests on the entirety of properties and property
values of a software product which influence its ability to satisfy
defined or expected requirements[1]. Tt follows, therefore, that clients
perceive software to be good software if it fulfils their expectations.

Introduction

IT specialists generally have a firm grasp of their methods and
tools and are good at their jobs. People within the departments and
management know what they need. They are familiar with the tech-
nical workflows and have wishes or perceptions of how they would
like to work. The peripheral systems are also usually well known.
So it is less the question of which knowledge exists and more of
how it can be translated into future software products. Ignorance
does not lead to bad software but the inefficient application of ex-
isting knowledge and substandard communication on the interface
between the real and abstract worlds. And the problem is merely
compounded by the unshakeable belief among all stakeholders that
they’ve understood what everyone else wants.

This book is based on the following proposition:

Poor software is mainly caused by
a lack of shared understanding.

How do misunderstandings occur? Why are people so often at
cross purposes, although they speak the same (natural) language?
Each environment (companies, departments, countries, cultures,
etc.) has terms that are used and understood by everyone. It’s
the common parlance of everyday life. But frequently the vocabu-
lary is imprecise, and the person using it is prone to assuming that
the recipient of the message will interpret the terms exactly as they
were intended. How can computer scientists and IT specialists —
who frequently come from a different environment than their clients
— become familiar with the internal jargon used in a company? Are
they even able to understand the specifications and wishes expressed
by their clients? What can be done to help them acquire the specific
language of an unfamiliar environment?

People often believe they understand things straight away. They
assume that other people have the same expectations as their own.
So even when everyone at a meeting shares the confident belief that
they’ve understood what was said, it is by no means certain that
they in fact did. Understanding is always dependent on the per-
spective, the area of action, the prior knowledge, the environment
or — in a nutshell — the context.!

1 This for our purposes should be taken to mean a mixture of language, culture,
education, experience, attitude, interests, etc.

Understanding

But software projects frequently involve collaboration between
people who do not possess the same contextual knowledge: external
consultants, freelance programmers, suppliers, managers, depart-
mental factotums and IT wizards, all of whom brim with different
levels and areas of education.

A shared context needs to be created as a matter of urgency to
ensure unambiguous communication in heterogeneously assembled
groups. This context must be documented in a manner that all
stakeholders understand. Clear and unequivocally defined terms,
and their clear and unequivocal use, are one of the essential factors,
if not the essential factor, for fruitful communication and therefore
good software. Put succinctly, everyone needs to speak a common
language.

The language will become muddled if the names
and terms are out of sync.

And muddled language leads to chaos and failure.
Where there is chaos and failure, decency and
moral standards will decline.

Confucius (551-479 BC)

Understanding

Allow me to introduce myself using three attribute values from our
personnel database:

Stefan | [Bemer | [1955 |

This information takes me right to the heart of this section. Why
do you understand it? Put differently, would you have understood

(Martin | [Peter | [s472 |

as well? Why not?

In the first example, your grasp of our shared culture and linguis-
tic understanding probably allowed you to recognise the two initial
words as a first name and a surname. Your assumption is based
on the fact that you're reading this book in English and that you

