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Preface

Coatings is an area with great variety which has developed to be a quite 
significant technique for protecting existing infrastructure from corrosion 
and erosion, maintaining and enhancing the performance of equipment, 
and providing novel functions such as smart coating. In recent years, coat-
ing techniques entered an age of rapid development, greatly benefiting the 
medical device, energy industry, automotive and construction industries. 

The mechanisms, usage, and manipulation of cutting edge coating 
methods are the focus of this book.  Not only are the working mechanisms 
of coating materials explored in great detail, but also craft designs for fur-
ther optimization of more uniform, safe, stable, and scalable coatings.

A group of leading experts in different coating technologies were invited 
to summarize the major developments in their discipline, demonstrate 
their main applications, identify the key bottlenecks, and prospects for the 
future. Their efforts are reflected in this book, Advanced Coating Materials, 
which broadly covers the coating techniques, including cold spray, plasma 
vapor deposition, chemical vapor deposition, sol–gel method, etc., and their 
significant applications in microreactor technology, super(de)wetting, joint 
implants, electrocatalyst, etc. Numerous kinds of coating structures are 
addressed, including nanosize particles, biomimicry structures, metals and 
complexed materials, along with the environmental and human compat-
ible biopolymers resulting from microbial activities. This book divides the 
collection of diversified topics related to coating materials into three parts: 
(1) Materials and Methods: Design and Fabrication, (2) Coating Materials: 
Nanotechnology, and (3) Advanced Coating Technology and Applications. 

The first part of the book, ‘Materials and Methods: Design and 
Fabrication’, describes the most promising approaches illustrated in coating 
techniques, with Chapter 1 broadly covering the adaptation of new coat-
ing techniques by explaining the science behind the molecular precursor 
method. Information regarding 3D cold spray modeling in an advanced 
coating process is covered in Chapter 2. The effects of laser process param-
eters (HLPP) on alloy characteristics are described in Chapter 3 and 
Chapter 4 focuses on physicochemical properties and electrocatalytical 
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reactivity in oxygen transfer reactions, suggesting that oxidative degra-
dation of organic substances is likely due to an increase in the amount 
of strongly bound oxygen-containing species on the electrode surface. 
Chapter 5 discusses nuclear fuel durability enhancement by using poly-
crystalline diamond (PCD) coating protection, which has been found by 
nuclear reactor research to be appropriate for prolonging the lifetime of 
nuclear cladding, and consequently enhancing nuclear fuel burnup as a 
passive element for nuclear safety. High-performance WC-based coatings 
for narrow and complex geometries are well defined in Chapter 6.

The topics in the second part of the book, ‘Coating Materials: 
Nanotechnology’, are related to dimensional properties of coating mate-
rials. The role of nanotechnology in paints and coatings is discussed in 
Chapter 7, which is representative of the recent technology enhancements 
which show an astonishing influence of dimensions on antimicrobial 
properties. Chapter 8 explains anodic oxide nanostructures and theories 
of anodic nanostructure self-organization (growth mechanism of oxide 
film). Next, in Chapter 9, the potential prospects of nanodiamond, epoxy, 
and important epoxy/ND hybrids for coatings and their significant appli-
cations are discussed. Nano-dimension coatings are an important coating 
technology that offer significant benefits for electrocatalytic applications in 
nanostructured metal–metal oxides, as described in detail in Chapter 10.

The last part of the book, ‘Advanced Coating Technology and 
Applications’, mainly focuses on the use of advanced coating technologies 
in applications of utmost significance to future advancements in the field. 
Chapter 11 describes solid-phase microextraction coatings based on tai-
lored materials (e.g., molecularly imprinted polymers), which are found to 
be a significant contributor to the field. The focus of Chapter 12 is the effect 
of laser processing on hardening of titanium alloy. Engineering involved in 
scalable fabrication of super(de)wetting coatings is described in Chapter 
13, along with prospects and guidelines for the upgraded development. In 
Chapter 14, some of the widely used polymers are discussed in detail and 
further research is suggested that can lead to their modification as coating 
materials for biomedical applications.

This book is written for readers from diverse backgrounds across 
nanotechnology, biomedical engineering, chemistry, physics, engineer-
ing, medical, environmental, and materials science fields. Since it offers a 
comprehensive view of innovative research in advanced coating materials 
and their technological importance, the book will be of benefit to scien-
tists, researchers, and technologists in advanced coating materials; those 
in industrial sectors intending to fabricate materials employing state-of-
the-art techniques; and students of PhD, master’s and undergraduate-level 
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courses on surface materials processing, properties, and applications of 
multidisciplinary subjects. 

The editors would like to thank the International Association of 
Advanced Materials, the eminent authors for their contributions to this 
book as well as the efforts of the publishing team.

Editors
Liang Li, PhD

Qing Yang, PhD
July 2018
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1

The Science of Molecular 
Precursor Method

Hiroki Nagai and Mitsunobu Sato*

Department of Applied Physics, School of Advanced 

Engineering, Kogakuin University, Tokyo, Japan

Abstracts
The metal complexes are used in various applications such as catalysts, lumines-

cent materials, and medicines. In 1996, one of the authors, M.S., focused on the 

thin-film fabrication of various metal oxides and phosphate compounds, using 

coating solutions involving stable metal complexes of industrially available mul-

tidentate ligands. This is the molecular precursor method (MPM). The method is 

based on the facile preparation of coating solutions involving the metal complex 

anions and alkylammonium cations. The stability, homogeneity, miscibility, coat-

ability, and other characteristics of the coating solutions are practical advantages, 

as compared to the conventional sol–gel method. This is because metal complex 

anions with high stability can be dissolved in volatile solvents by combining with 

appropriate alkylamines. Furthermore, the resultant solutions can form excel-

lent precursor films through various coating procedures including spin-coating. 

The precursor films obtained by the coating process on various substrates should 

be amorphous, just as with the metal/organic polymers in the sol–gel processes; 

otherwise, it would not be possible to obtain the resulting metal-oxide or metal-

phosphate thin films spread homogeneously on substrates by heat treatment. The 

advantages of the molecular precursor solutions will be also explained through 

detailed results of thin film fabrication in this chapter.

Keywords: Molecular precursor method, stability, homogeneity, miscibility, 

coatability, functional thin films

*Corresponding author: lccsato@cc.kogakuin.ac.jp
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1.1  Metal Complex

Metal complexes (coordination compounds) are one of the most impor-
tant chemical compounds and form the basis of coordination chemistry. 
Coordination chemistry is being considered a science only after the for-
mulation of the coordination theory proposed by A. Werner [1, 2]. After 
Werner, enormous metal complexes were obtained, characterized, and 
widely applied. Especially, their syntheses, structures, and properties have 
been investigated.

Metal complexes consisted of a central metal atom (ion) and ligands 
connected to the metal atom. The combination of metal atom and ligand 
produces the coordination sphere, which is formed by coordination bonds 
having donor–acceptor interactions. A coordination bond is mostly formed 
as a result of the overlapping of atomic orbitals (AO) of ligands, filled with 
electrons and/or vacant AO of the central metal atom. Lewis acid can form 
a new covalent bond by accepting a pair of electrons, and Lewis base can 
form a new covalent bond by donating a pair of electrons. The fundamen-
tal Lewis acid–base theory is described by a direct equilibrium, leading to 
the complex formation as follows.

 M + :L M:L

Thus, the coordination (donor–acceptor) bond between the central 
metal (M) and each joining group (ligand, L) is formed by the electron 
pair. The conventional theory by Lewis made a considerable contribution 
in understanding the reaction with participation of Lewis acids and bases.

The HSAB (Hard and Soft Acids and Bases) principle is one of the 
important theories for coordination chemistry, formulated by Pearson in 
1963 [3]. The following three statements are the basis of HSAB.

1. Chemical reactions, in particular complex formation, can be 
classified as acid–base ones; the resulting products can be 
examined as complexes of the type Lewis acids and bases.

2. All acids and bases can be divided into hard, soft, and/or 
intermediate.

3. The HSAB principle itself is the following: the acid–base 
reactions take place in such a way that hard acids prefer to be 
connected with hard bases, meanwhile soft acids react with 
soft bases.

The classification of HSAB is summarized in Table 1.1.
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The HSAB principle emphasizes the preference for hard–hard and soft–
soft interactions, and the highest thermodynamic stability of complexes 
formed as a result is achieved.

The rows shown below indicate that the hardness of the elements (donor 
atoms in ligands) decreases from left to right:

 N > P > As > Sb, O > S > Se > Te, F > Cl > Br > I

Ligands with N, O, F, Cl donor atoms containing a combination of these 
elements are hard bases according to Pearson. On the contrary, containing 
elements further to the right are soft bases. The hardness and softness of 
acids depend considerably on the oxidation number of the metal center.

The HSAB conception has been widely used to explain various coordi-
nation modes in the complexes of di-and polydentate ligands. The solvent 
nature can be also an important factor. The most favorable conditions to 
control the localization mode of a coordination bond with participation of 
ligands containing hard and soft donor atoms are created when complex-
formation reactions are carried out in aprotic nonaqueous solvents.

Ligands, as the main part of metal complexes, are the object of a great 
deal of attention in coordination and organometallic chemistry. The reac-
tion control should be emphasized among the reaction conditions of com-
petitive complex formation. It is necessary to take into account that it is 
possible to determine, and frequently predict, the direction of the electro-
philic attack to the donor atom of di- and polyfunctional donors (ligands) 
only in the case when the thermodynamically stable products are formed 
under conditions of kinetic control.

Table 1.1 HSAB classification of metal and ligand.

Metal Ligand

Hard H+, Li+, Na+, K+, Be2+, Mg2+, 

Ca2+, Sr2+, Mn2+, Al3+, N3+, 

As3+, Cr3+, Co3+, Fe3+, Si4+, 

Sn4+, BF
3
, AlCl

3
, CO

2

H
2
O, OH , F ,SO

4
2 , PO

4
3 , 

CH
3
CO

2
, RO , Cl , ClO

4
, 

NO
3

, ROH, NH
3
, RNH

2

Borderline Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, 

Sn2+, Sb3+, Bi3+, Rh3+, Ir3+, SO
2
, 

NO+, Ru2+, Os2+, R
3
C+, C

6
H

5
+

C
6
H

5
NH

2
, C

5
H

5
N, N

3
, Br , 

NO
2

, SO
3

2 , N
2

Soft Ag+, Cu+, Au+, Tl+, Hg+, Pd2+, 

Cd2+, Pt2+, Hg2+, Pt4+, Tl3+, 

RS+, I+, HO+, I
2
, Br

2
, ICN,

R
2
S, RSH, RS , I , SCN , R

3
P, 

CN , RCN, CO, C
2
H

4
, 

C
6
H

6
, H
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Thus, the thermodynamic stability of complexes is discussed, when the 
bond between the metal and di- and polydentate ligands is localized in the 
place of primary attack on the donor atoms by the electrophilic reagent, 
without further change of coordination mode in the reaction of complex 
formation.

1.2  Molecular Precursor Method

In 1996, one of the authors, M.S., focused on the thin-film fabrication of vari-
ous metal oxides and phosphate compounds using the stable metal complexes 
[4–54]. This is the Molecular Precursor Method (MPM), which is one of the 
chemical processes used for thin-film fabrication. In those days, most of the 
researchers in the field of thin-film formation by chemical processes preferred 
to use rather unstable metal complexes. It is easy to imagine the capability 
of polymers to form “films” because we use polymer films every day. In fact, 
well-adhered precursor films involving metal ions can be formed on various 
substrates by coating the solution dispersing the produced oligomers and 
polymers including metallic species provided by hydrolyzing the unstable 
metal complexes. These results led us to believe for a long time that only the 
oligomers and polymers can form precursor films, but the stable metal com-
plexes having a discrete molecular weight would not be useful in the fabrica-
tion of such thin films. The MPM was a challenge to this central belief.

The MPM, pertinent to coordination chemistry and materials science 
including nanoscience and nanotechnology, has been used to fabricate 
various high-quality thin films with appropriate film thicknesses. As a 
result, the MPM represents a facile procedure for thin-film fabrication of 
various metal oxides or phosphates, which are useful as electron and/or 
ion conductors, semiconductors, dielectric materials such as In

2
O

3
, ZnO, 

LiCoO
2
, Li

3
Fe

2
(PO

4
)

3
, TiO

2
, Cu

2
O, Co

3
O

4
, SrTiO

3
, ZrO

2
, SiO

2
, BaTiO

3
, and 

Ca
10

(PO
4
)

6
(OH)

2
. The MPM aims to develop many functional materials by 

surface modification of various substrates including glasses, metals, and 
ceramics, through chemical fabrication of thin films. One of the features 
related to this method is the low-cost manufacture involving the chemical 
process, which can save both resource and production energy.

1.3  Counter Ion (Stability)

The appropriate alkyl groups in the used amines play an essential role. This 
principle of the MPM is absolutely different from that of the conventional 
sol–gel method, which needs and uses the mixture of oligomers and poly-
mers for the identical purpose. Amino group itself is usually very reactive, 
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forming simple salts with metal complex anions. The stability of these salts 
is dependent on the basicity of amine and pH in the used solvent. Most of 
these salts are rather soluble in both water and aprotic organic solvents. 
Additionally, the presence of the ligands in metal complex anions and alkyl-
ammonium cations in the precursor films generally affects the properties of 
resultant thin films, as expected. It is very interesting that the thermal reac-
tions between them and metallic species are quite sensitive to the reaction 
conditions during heat treatment for fabricating the final thin films.

Single crystals of the metal complex can be obtained from the precursor 
solution in several cases when the alkyl groups in the alkylamines are suf-
ficiently small, for example, an ethyl group. The model structure of the amor-
phous precursor films formed on substrates can be examined by means of 
crystal engineering and based on the crystal structures. For example, an 
ORTEP view of the precursor complex having the EDTA (ethylenediamine-
tetraacetic acid) and peroxo ligands linked to the central Ti4+ ion is shown 
in Figure  1.1. The molecular structure was determined by an X-ray single 
crystal structure analysis of the diethylammonium salt of the complex. The 

O(10)

C(10)O(9)

C(9)

C(7)

C(8)

C(1)

C(2)
C(4) O(4)

C(3)

O(3)

O(7)

O(8)

O(1)

O(2)

O(5)

C(5)

C(6)

O(6)

N(2)

Ti(1)

N(1)

Figure 1.1 An ORTEP view of the precursor complex having the EDTA and peroxo 

ligands linked to the central Ti4+ ion.
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single crystals of the identical orange-yellow color could be obtained from 
a reacted solution of the complex with the diethylamine. The single crys-
tal was {(C

2
H

5
)

2
NH

2
}[Ti(O

2
)(Hedta)]·1.5H

2
O; in a monoclinic crystal sys-

tem, P2
1
/c with a = 8.583(1) Å, b = 6.886(1) Å, c = 36.117(2) Å, and β = 

92.780(3)°. The full-matrix least-squares refinement on F2 was based on 
3206 observed reflections that were measured at 250 K by using an imaging 
plate as a detector and converged with unweighted and weighted agree-
ment factors of R = 0.054 and Rw = 0.061, respectively, and GOF = 1.63. 
Two Ti–N(edta) bond lengths of 2.307 and 2.285 Å are slightly longer than 
the bond length of 2.12 Å in the TiN single crystal.

Results indicated that EDTA acts as a pentadentate ligand in the com-
plex, and the peroxo ligand linked to the Ti4+ ion has a side-on coordination 
structure.

1.4  Conversion Process from Precursor 
Film to Oxide Thin Film

A stable metal complex anion in the precursor solution is dissolved at 
a molecular level. The metal complex salt in the precursor film must be 
amorphous before heat treatment in order to fabricate thin films without 
cracks and pinholes. The alkylammonium cations play an important role 
in obtaining an amorphous salt in the precursor film. The plausible pack-
ing of the metal complex in the precursor film formed on the substrate can 
be theoretically explained using molecular dynamics and crystal engineer-
ing. The shrinkage rate of the film in the vertical direction can be easily 
estimated from the model structure before heat treatment based on the 
crystal structure of the metal complex salt, which can be obtained as a 
single crystal when the alkyl groups in the amines are short enough. The 
shrinkage rate in the sol–gel method is usually considered to be around 
10 times. However, it is roughly estimated to be 10–15 times in the case of 
MPM, on the basis of the crystal structures (Figure 1.2). Thus, the densifi-
cation degrees of the precursor films during heat treatment in the process 
of MPM are similar to those in sol–gel procedures, even though the pre-
cursor films involve alkylamines and ligands.

1.5  Anatase–Rutile Transformation 
Controlled by Ligand

Titanium dioxide, the only naturally occurring oxide of titanium at atmo-
spheric pressure, exhibits three polymorphs, rutile, anatase, and brookite. 


