Edition Radiopraxis Angiografie für MTRA/RT

Edition Radiopraxis

Angiografie für MTRA/RT

Özge Tugce Dedehayir Volker Heßelmann Tarek Zoubi

147 Abbildungen

Anschriften

Özge Tugce Dedehayir Universitätsklinikum Münster Institut für Klinische Radiologie Albert-Schweitzer-Campus 1, Gebäude A1 48149 Münster

PD Dr. med. Volker Heßelmann Asklepios Klinik Nord Radiologie/Neuroradiologie Tangstedter Landstr. 400 22417 Hamburg

Dr. med. Tarek Zoubi Radiologische Gemeinschaftspraxis Ibbenbüren-Lengerich Bergstraße 1 49477 Ibbenbüren

Wichtiger Hinweis: Wie jede Wissenschaft ist die Medizin ständigen Entwicklungen unterworfen, Forschung und klinische Erfahrung erweitern unsere Erkenntnisse, insbesondere was Behandlung und medikamentöse Therapie anbelangt, Soweit in diesem Werk eine Dosierung oder eine Applikation erwähnt wird, darf der Leser zwar darauf vertrauen, dass Autoren, Herausgeber und Verlag große Sorgfalt darauf verwandt haben, dass diese Angabe dem Wissensstand bei Fertigstellung des Werkes entspricht.

Für Angaben über Dosierungsanweisungen und Applikationsformen kann vom Verlag jedoch keine Gewähr übernommen werden. Jeder Benutzer ist angehalten, durch sorgfältige Prüfung der Beipackzettel der verwendeten Präparate und gegebenenfalls nach Konsultation eines Spezialisten festzustellen, ob die dort gegebene Empfehlung für Dosierungen oder die Beachtung von Kontraindikationen gegenüber der Angabe in diesem Buch abweicht. Eine solche Prüfung ist besonders wichtig bei selten verwendeten Präparaten oder solchen, die neu auf den Markt gebracht worden sind. Jede Dosierung oder Applikation erfolgt auf eigene Gefahr des Benutzers. Autoren und Verlag appellieren an jeden Benutzer, ihm etwa auffallende Ungenauigkeiten dem Verlag mitzuteilen.

Impressum

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Ihre Meinung ist uns wichtig! Bitte schreiben Sie uns unter

www.thieme.de/service/feedback.html

© 2018 Georg Thieme Verlag KG Rüdigerstr. 14 70469 Stuttgart Deutschland www.thieme.de

Printed in Germany

Zeichnungen: Christine Lackner, Ittlingen Umschlaggestaltung: Thieme Gruppe Umschlagfoto: MEV Agency UG, Augsburg Fachredaktion: Dr. Catharina Brandes, Gmund Satz: L42 AG, Berlin

Druck: Westermann Druck Zwickau GmbH. Zwickau

DOI 10.1055/b-004-132 206

ISBN 978-3-13-177051-6

123456

Auch erhältlich als E-Book: eISBN (PDF) 978-3-13-177061-5 eISBN (epub) 978-3-13-177071-4 Geschützte Warennamen (Warenzeichen ®) werden nicht immer besonders kenntlich gemacht. Aus dem Fehlen eines solchen Hinweises kann also nicht geschlossen werden, dass es sich um einen freien Warennamen handelt.

Das Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwendung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen oder die Einspeicherung und Verarbeitung in elektronischen Systemen.

Geleitwort

Die Radiologie ist eine der Schlüsseldisziplinen der Medizin des 21. Jahrhunderts und gehört zu den Fachgebieten mit den höchsten Innovationspotentialen. In Zeiten immer weiter fortschreitender Spezialisierung der Medizin ist Kernaufgabe des Radiologen nicht nur, die korrekte Diagnose zu stellen, sondern auch den Patienten zu beraten und in enger Zusammenarbeit mit allen anderen Fachgebieten eine individualisierte und optimale Behandlungsstrategie zu entwickeln. Eine adäquate bildgebende Diagnostik verbessert die Heilungschancen und senkt gleichzeitig die Kosten im Gesundheitswesen. Bildgesteuerte minimal-invasive radiologische Therapien von Gefäßerkrankungen und Tumoren vermindern die Anzahl großer Operationen und verkürzen die Rekonvaleszenzzeit. Bildgebende Diagnostik und minimal-invasive radiologische Verfahren sind zentraler Beitrag zur personalisierten Präzisionsmedizin der Zukunft.

Diese Entwicklung erfordert in der Radiologie große Einheiten in Klinik und Praxis sowie Teams, die einerseits die Spezialisierung in den verschiedenen Organgebieten garantieren und gleichzeitig eine Weitergabe des Wissens an den Nachwuchs sicherstellen. Diese Bildung von Schwerpunkten macht eine enge Kooperation mit anderen Fachgebieten notwendig, wie sie in führendenden Zentren heute schon durch interdisziplinäre Falldemonstrationen und Tumorkonferenzen gelebt wird. Diese Entwicklungen machen auch zunehmend eine Schwerpunktbildung des radiologischen Assistenzpersonals notwendig.

In diesem Sinne ist es für mich eine besondere Freude, dass meine Mitarbeiterin Frau Özge Tugce Dedehayir aus eigener Initiative zusammen mit dem Thieme Verlag in der Edition Radiopraxis ein Erstlingswerk zum Schwerpunkt "Angiografie für MTRA/RT" erarbeitet hat. Mitherausgeber sind Herr Dr. med. Tarek Zoubi und Herr PD Dr. med. Heßelmann, beides ebenfalls frühere und sehr geschätzte Mitarbeiter des Instituts für Klinische Radiologie im Universitätsklinikum Münster. Schreiben verbindet und so sind Frau Dedehayir und Herr Dr. Zoubi mittlerweile auch privat ein Team.

Die Autoren ermöglichen mit dem vorliegenden Buch radiologischen Fachkräften in der Ausbildung, in den ersten Jahren des Berufslebens, aber vor allem auf dem Weg der Konzentration nach Neigung und Begabung zu einem persönlichen "Arbeitsschwerpunkt Angiografie" den aktuellen Stand des Wissens umfassend zu erlernen. Ich wünsche dem Werk eine weite Verbreitung unter allen MTRA und RT. Es soll dazu beitragen, das Wissen über die Möglichkeiten der angiographischen Diagnostik und Katheter-gestützter Behandlungsverfahren zu verbreiten. Die Versorgung unserer Patienten mit diesen modernen Techniken rund um die Uhr wird immer wichtiger.

Münster, im Frühjahr 2018

Univ.-Prof. Dr. med. Walter Heindel Direktor des Instituts für Klinische Radiologie Universitätsklinikum Münster

Vorwort

Bereits zu Beginn meiner beruflichen Karriere als MTRA faszinierte mich der Angiografie-Arbeitsplatz. Das Arbeiten hier stellt im Vergleich zu allen übrigen radiologischen Verfahren besondere Anforderungen an die/den MTRA – vor, während und nach jedem Eingriff.

Die Idee ein Buch über die Angiografie zu schreiben entwickelte sich in meiner eigenen Lernphase im Bereich der interventionellen Radiologie, da ich zielgerichtete Literatur vermisste. Heute stellt der Angiografie-Arbeitsplatz meinen Tätigkeitsschwerpunkt dar, den ich in Leitungsposition ausübe. Die Vorstellungen zur Umsetzung des Buches haben sich über mehrere Jahre entwickelt. Aufgrund der Komplexität angiografischer Untersuchungstechniken und endovaskulärer Therapien sollen nicht nur praktische Behandlungsabläufe – auch neuester Techniken – sondern auch anatomische und physiologische Grundkenntnisse sowie Grundlagen der Angiografie vermittelt werden.

Das Buch soll MTRA in der Ausbildung, examinierten MTRA und anderen Interessenten einen Leitfaden für den Berufsalltag in der Angiografie geben. In den nachfolgenden Kapiteln beziehe ich mich auf meine Berufserfahrung im Universitätsklinikum Münster. Hierbei ist zu erwähnen, dass

die im Buch genannten Materialien aufgrund verschiedener Erfahrungen zwischen unterschiedlichen Kliniken abweichen können.

Ich bedanke mich bei dem Angiografie-Team des Instituts für Klinische Radiologie des Universitätsklinikums Münster für die Unterstützung während der Erstellung des Manuskripts. Einen herzlichen Dank möchte ich Herrn Hempel für die konstruktive Zusammenarbeit bei der Erstellung des Bildmaterials aussprechen. Im Besonderen danke ich Herrn Prof. Dr. Heindel, Direktor des Instituts für Klinische Radiologie des Universitätsklinikums Münster, für die freundschaftliche Unterstützung am gesamten Werk. Meinen beiden Koautoren, Herrn Dr. Heßelmann und Herrn Dr. Zoubi, danke ich vielmals für die gemeinsame vertrauensvolle und sehr gute Zusammenarbeit.

Mein herzlichster Dank richtet sich an meine Eltern, Tümay und Faruk Dedehayir, meine Schwester, Gamze Dedehayir, sowie an meinen Verlobten Dr. Tarek Zoubi. Durch ihre Unterstützung, ihren Zuspruch und ihre Liebe haben sie zum Gelingen dieses Werks beigetragen. Ihnen widme ich dieses Buch.

Münster, im Herbst 2017 Özge Tugce Dedehayir

Abkürzungen

A. ABI	Arteria Ankle Brachial Index = Knöchel-Arm-	mSv MTT	Milli-Sievert Mean Transit Time Natriumchlorid
ASS	Index Acetylsalicylsäure	NaCl NBCA	N-Butylcyanoacrylat (Glubran)
AVM	arteriovenöse Malformation	OD	Outer Diameter
Ch	Charrière	OTW	Over the Wire
CO ₂	Kohlenstoffdioxid	• • • • •	posterior-anterior
COPD	chronisch obstruktive Lungenerkran-	p. a. PACS	Picture Archiving and Communication
COLD	kung	racs	System
ст	Computertomografie	pAVK	periphere arterielle Verschlusskrank-
DMSO	Dimethylsulfoxid	Privit	heit
DSA	Digitale Subtraktionsangiografie	PET	Positronenemissionstomografie
EKG	Elektrokardiogramm	PSA	persönliche Schutzausrüstung
Fr	French	PTA	Perkutane transluminale Angioplastie
G	Gauge	PTFE	Polytetrafluorethylen
GDC	Guglielmi Detachable Coils	PTT	Partielle Thromboplastinzeit
GI(T)	Gastrointestinaltrakt	PVA	Polyvinylalkohol
HCC	hepatozelluläres Karzinom	PVOD	Pulmonale venooklusive Erkrankung
i.a.	intraarteriell	RAO	rechts anterior oblique
ID	Inner Diameter	rCBF	regionaler zerebraler Blutfluss
IE	Internationale Einheit	rCBV	regionales zerebrales Blutvolumen
in	Inch	RFA	Radiofrequenzablation
INR	International Normalized Ratio	rt-PA	Recombinant Tissue Plasminogen Acti-
i. v.	intravenös		vator
KG	Körpergewicht	RöV	Röntgenverordnung
KM	Kontrastmittel	SIRT	Selektive interne Radiotherapie
kV	Kilovolt	SPECT	Single Photon Emission Computed To-
LAO	links anterior oblique		mography
LITT	laserinduzierte Thermotherapie	StrlSchV	Strahlenschutzverordnung
M.	Musculus	TACE	transarterielle Chemoembolisation
MAA	makroaggregiertes Albumin	TASC	Transatlantic Inter-Society Consensus
mmPb	Bleigleichwert	TC	Technetium
MR	Magnetresonanz	TIP(S)S	transjugulärer intrahepatischer por-
MRT	Magnetresonanztomografie	TCII	tosystemischer (Stent-)Shunt
MTRA	Medizinisch-technische Radiologie-As-	TSH	Thyreoidea-stimulierendes Hormon
	sistentin	WEB	Woven Endobridge Systeme

Inhaltsverzeichnis

1	Anatomie und Physiologie d	es He	erz-Krei	islauf-Systems	11
1.1	Das Herz	11	1.3	Das venöse System	17
1.2 1.2.1	Das arterielle System	12 12	1.3.1 1.3.2	Vena cava und Hauptzuflüsse Pfortadersystem	18 18
1.2.2 1.2.3	Aorta und abzweigende Gefäße Hals- und hirnversorgende Arterien	12 14	1.3.3	Häufige Erkrankungen des venösen Systems	18
1.2.4 1.2.5 1.2.6	ArmgefäßeBecken- und Beingefäße Häufige Erkrankungen des	15 16	1.4	Literatur	18
2	arteriellen Systems Grundlagen der Angiografie	16			19
2.1	Definitionen	19	2.7	Vaskuläre Zugangswege	38
2.2	Digitale Subtraktionsangiografie	19	2.7.1	Arterieller Zugang	38
2.2.1 2.2.2	Prinzip und Indikationen Personelle und apparative	19	2.7.2 2.7.3	Venöser Zugang Seldinger-Technik	38 38
	Ausstattung	20	2.8	Hämostasetechniken	40
2.3	Strahlenschutz	21	2.8.1	Arterielle Hämostase	40
2.3.1	Baulicher Strahlenschutz	21	2.8.2	Venöse Hämostase	41
2.3.2 2.3.3	Personenbezogener Strahlenschutz Überwachung	21 22	2.9	Patientennachsorge	41
2.4	Hygiene	23	2.10	Bildnachbearbeitung und Untersuchungsdokumentation .	41
2.5	Materialien	23	2.10.1	Bildnachbearbeitung	41
2.5.1	Größenangaben	23	2.10.2	Untersuchungsdokumentation	42
2.5.2 2.5.3	StandardmaterialienBallonkatheter	23 28	2.11	Typische Komplikationen	42
2.5.4	Stents	29	2.11.1	Komplikationen bei Punktion einer	
2.5.5	Embolisate	31	2.11.2	Arterie Komplikationen während oder	42
2.6	Vorbereitung	35		nach einer DSA	43
2.6.1 2.6.2	Patientenvorbereitung Untersuchungsvorbereitung	35 37	2.12	Literatur	43
3	Diagnostische digitale Subtr	aktio	onsangi	ografie	44
3.1	Extremitätengefäße	44	3.2	Thorakale und mesenteriale	4-
3.1.1	Indikation	44		Gefäße	45
3.1.2	Durchführung	44	3.2.1 3.2.2	Indikation	45 45

3.3	Zerebrale und spinale Gefäße	45	3.3.3	Komplikationen und Risiken	50
3.3.1 3.3.2	Indikation Durchführung	45 46	3.4	Literatur	52
4	Gefäßeröffnende Therapiev	erfah	ren		53
4.1	Periphere Gefäße	53	4.2	Hirnversorgende Gefäße	61
4.1.1 4.1.2 4.1.3 4.1.4	Ballon- und Stentangioplastie Lokale Lysetherapie	53 57 58 59	4.2.1 4.2.2 4.2.3	Ballon- und Stentangioplastie Mechanische Rekanalisation Therapie von Vasospasmen	61 64 72
			4.3	Literatur	74
5	Gefäßverschließende Thera	pieve	rfahrer	1	76
5.1	Akute Blutung (des Gastrointestinaltrakts)	76	5.3.2 5.3.3	Diagnostik	82 82
5.1.1 5.1.2 5.1.3	Ätiologie und Pathogenese Klinische Symptome Diagnostik	76 76 76	5.4	Periphere arteriovenöse Malformationen	89
5.1.4	Therapie	77	5.4.1 5.4.2	Ätiologie und Pathogenese Diagnostik	89 90
5.2	Adjuvante Therapie – Wirbelkörperembolisation	79	5.4.3	Therapie	90
5.2.1 5.2.2	Indikation	80 80	5.5	Durale und piale arteriovenöse Malformationen	91
5.2.3 5.2.4	Therapie Kontraindikation	80 81	5.5.1 5.5.2	EinteilungTherapie	91 93
5.3	Endovaskuläre Therapie zerebraler Aneurysmen	81	5.6	Literatur	96
5.3.1	Ätiologie und Pathogenese	81			
6	Endovaskuläre Diagnose- u	nd Th	erapiev	verfahren bei Tumoren	98
6.1	Transjuguläre Leberbiopsie	98	6.2.2	Durchführung	101
6.1.1	Indikation	98	6.2.3	Verlaufskontrollen	102
6.1.2 6.1.3	Biopsietechniken Durchführung	98 99	6.3	Selektive interne Radiotherapie.	102
6.1.4	Ergebnisqualität	100	6.3.1 6.3.2	Indikation und Behandlungsziele Durchführung	102 103
6.2	Transarterielle Chemoembolisation	100	6.3.3	Verlaufskontrollen	105
6.2.1	Indikation und Behandlungsziele	100	6.4	Literatur	105

7	Shuntverfahren				106
7.1	Transjugulärer intrahepatischer portosystemischer Stent-Shunt	106	7.2	Dialyseshunt	110
7.1.1 7.1.2	Pathophysiologie	106 106	7.2.1 7.2.2	Indikation Durchführung	110 110
7.1.2	merapie	100	7.3	Literatur	111
8	Weitere Verfahren				112
8.1	Implantation eines Ports	112	8.1.2	Durchführung	112
8.1.1	Indikation	112			
9	Häufig angewandte Arznein	nittel	in der i	interventionellen Radiologie	114
9.1	Allgemeine Anmerkungen	114	9.3.13	Flumazenil	119
9.2	Wichtige Medikamentengruppen	114	9.3.14 9.3.15	Glucagon	119 119
9.2.1	Rheologika	114	9.3.16	Metamizol	120
9.2.2	Analgetika	114	9.3.17	Metoclopramid	120
9.2.3	Antikoagulanzien	114	9.3.18	Midazolam	120
9.2.4	Fibrinolytika	114	9.3.19	Natriumperchlorat	121
			9.3.20	Nimodipin	121
9.3	Übersicht einzelner Wirkstoffe .	115	9.3.21	Nitroglycerin	121
004	41	445	9.3.22	Ondansetron	122
9.3.1	Abciximab	115	9.3.23	Parecoxib	122
9.3.2	Acetylsalicylsäure	115	9.3.24	Piritramid	122
9.3.3	Alprostadil	115	9.3.25	Prednisolon	123
9.3.4	Atropin	116	9.3.26	Protamin-HCI	123
9.3.5 9.3.6	ButylscopolaminCefotaxim	116	9.3.27	rt-PA	123
9.3.7		116	9.3.28	Tirofiban	123
9.3.7	CimetidinClemastin	117 117	9.3.29	Prilocain	124
9.3.9	Clopidogrel	117	9.3.30	Propofol	124
9.3.10	Danaparoid	117			
9.3.11	Eptifibatid	118	9.4	Literatur	124
9.3.12	Fentanyl	118			
10	Häufig angewandte Kathete	er in d	er inte	rventionellen Radiologie	125
	Sachverzeichnis				127

1 Anatomie und Physiologie des Herz-Kreislauf-Systems

Der menschliche Körper ist von zahlreichen Blutgefäßen durchzogen, die für den Bluttransport im Körper verantwortlich sind. Das Herz dient als Motor für einen kontinuierlichen Blutfluss. Man spricht auch vom Herz-Kreislauf-System (▶ Abb. 1.1). Dabei transportieren die Arterien das Blut bis in die Peripherie und die Venen anschließend zum Herzen zurück [3].

1.1 Das Herz

Das Herz ist ein muskuläres Hohlorgan und funktioniert im Blutkreislauf als eine Druck- und Saugpumpe. Sie besteht aus der innersten Schicht, dem Endokard, umhüllt von einer muskulären Schicht, dem Myokard, sowie dem Herzbeutel, bestehend aus dem Epi- und Perikard.

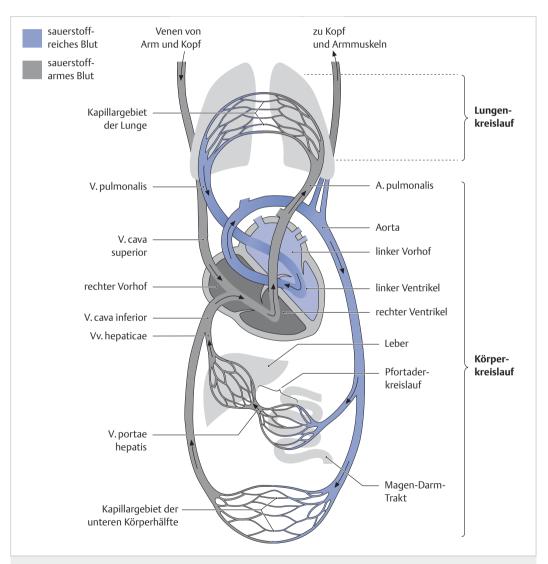


Abb.1.1 Herz-Kreislauf-System. (Quelle: Schünke M, Schulte E, Schumacher U. Prometheus LernAtlas der Anatomie. Innere Organe. Illustrationen von M. Voll und K. Wesker. 4. Aufl. Thieme; 2015)

Die Herzscheidewand (Septum cardiale) trennt das Herz in eine rechte und linke Herzhälfte. Eine Herzhälfte besteht jeweils aus zwei Hohlräumen: einem Vorhof (Atrium) und einer Herzkammer (Ventrikel). Vorhof und Kammer werden durch Segelklappen getrennt, während Taschenklappen die Herzkammern von den großen abgehenden Gefäßen trennen. Die Funktion der Herzklappen ist die Gewährleistung eines gleichgerichteten Blutflusses. Der rechte Vorhof (Atrium cordis dextrum) wird von der rechten Kammer (Ventriculus cordis dextrum) durch eine dreiteilige Segelklappe (Trikuspidalklappe) und der linke Vorhof (Atrium cordis sinistrum) von der linken Kammer (Ventriculus cordis sinistrum) durch eine zweiteilige Segelklappe (Mitralklappe) getrennt. Die A. pulmonalis (Lungenarterie) wird von der rechten Herzkammer durch eine Taschenklappe (Pulmonalklappe) getrennt.

Die Blutversorgung des Herzens geschieht über zwei große Koronararterien, welche mit ihren Ästen das Herz kranzförmig umgeben. Zu diesen zählen die A. coronaria dextra und die A. coronaria sinistra. Das venöse Blut wird über die V. cardiaca magna und den Sinus coronarius in die obere Hohlvene abtransportiert.

Der Herzzyklus besteht aus zwei Phasen: der Pumpphase (Systole) und der Entspannungsphase (Diastole). Während der Diastole strömt das sauerstoffarme Blut aus dem Körperkreislauf in die rechte Herzkammer und das sauerstoffreiche Blut aus dem Lungenkreislauf in die linke Herzkammer. Dieser Mechanismus geschieht über eine Entspannung des Herzmuskels. Dabei sind die Segelklappen geöffnet und die Taschenklappen geschlossen. Nachdem beide Herzkammern mit Blut gefüllt wurden, endet die Diastole und die Systole beginnt. Nun kontrahiert der Herzmuskel; dabei verschließen sich die Segelklappen und die Taschenklappen öffnen sich. Somit kann das sauerstoffreiche Blut aus der linken Herzkammer in die Aorta und anschließend über Arterien in den Körper fließen (Körperkreislauf).

Das venöse Blut passiert über den rechten Vorhof die rechte Herzkammer und gelangt über die Lungenarterien in die kleinen Lungenkapillaren. In den Kapillaren findet der Gasaustausch statt, sodass das Blut wieder mit Sauerstoff angereichert und über die Venen in den linken Vorhof und folgend in die linke Herzkammer gepumpt wird (Lungenkreislauf). Sobald das Blut aus den Herzkammern entleert ist, beginnt wieder die Phase der Diastole.

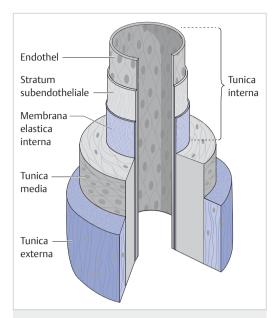


Abb. 1.2 Wandaufbau von Arterien.

1.2 Das arterielle System

1.2.1 Aufbau von Arterien

Arterien des Körperkreislaufs sind für den Transport des sauerstoffreichen Blutes aus dem Herzen zu den Organen zuständig. Prinzipiell sind große Arterien charakterisiert durch einen dreischichtigen Aufbau (▶ Abb. 1.2): Die Tunica interna (Intima), Tunica media (Media) und die Tunica externa (Adventitia). Die Tunica media besitzt glatte Muskelzellen, die der Arterie eine Verengung (Konstriktion) ermöglicht. Dies ist z.B. im Rahmen einer Blutdruckregulation notwendig.

1.2.2 Aorta und abzweigende Gefäße

Die Aorta wird unterteilt in die aufsteigende Aorta (Aorta ascendens), den Aortenbogen (Arcus aortae) und die absteigende Aorta (Aorta descendens) (

Abb. 1.3). Im thorakalen Abschnitt wird die Aorta descendens auch als Aorta thoracalis und unterhalb des Zwerchfells als Aorta abdominalis bezeichnet

Aus der Aorta ascendens entspringen die rechte und linke Koronararterie (A. coronaria dextra und sinistra). Dem Aortenbogen treten die supraaortalen Gefäße des Truncus brachiocephalicus, die

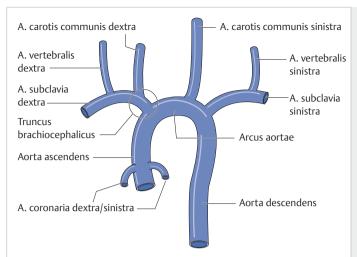


Abb. 1.3 Aortenbogen und abgehende Äste.

A. vertebralis dextra, die A. carotis communis sinistra und A. subclavia sinistra aus. Der Truncus brachiocephalicus ist der gemeinsame Gefäßstamm der A. carotis communis dextra und der A. subclavia dextra.

Der Truncus coeliacus ist der erste unpaare Ast aus der Aorta abdominalis (▶ Abb. 1.4). Er ist verantwortlich für die arterielle Blutversorgung von Magen (A. gastrica sinistra), Leber (A. hepatica) und Milz (A. lienalis).

Die obere Eingeweidearterie (A. mesenterica superior) beginnt unterhalb des Truncus coeliacus, auf Höhe des ersten Lendenwirbels, und ist der zweite unpaare Ast aus der Aorta abdominalis. Sie ist für die arterielle Blutversorgung des Zwölffingerdarms (Duodenum), der Bauchspeicheldrüse (Pankreas) und von Teilen des Dick- und Dünndarms (Kolon) zuständig.

Für die Versorgung der Nieren entspringen der Aorta abdominalis die paarig angelegten Nierenarterien (A. renalis dextra/sinistra) auf Höhe des zweiten Lendenwirbelkörpers.

Der absteigende Darm (Colon descendens), der Sigmadarm (Colon sigmoideum) und der obere Rektumabschnitt werden über die untere Eingeweidearterie (A. mesenterica inferior) versorgt. Die A. mesenterica inferior ist der dritte unpaare Ast und entspringt in Höhe des dritten Lendenwirbels aus der Aorta abdominalis zwischen der Aa. renales und der Aortenbifurkation [3].

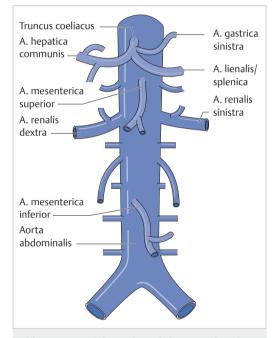


Abb. 1.4 Aorta abdominalis und abzweigende Gefäße.